实际问题与方程例3教学反思精选。
下面是教师范文大全的编辑整理的“实际问题与方程例3教学反思”。双手扶持千木茂,慈怀灌注万花稠,若想提高自己的教学质量,那就得先从教案下手。教案方式备课要学会探究,乐于进行研究性学习。强烈建议你能收藏本页以方便阅读!
实际问题与方程例3教学反思 篇1
在这节课之前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题。
这一节共安排了三个实际问题,这些问题比前面的问题更接近现实,数量关系相对比较隐蔽,因此这些问题的分析解决难度比以前的问题也要大些。这节课更为关注建立二元一次方程组数学模型的“探索”过程。它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据。
所以我觉得设计此课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用。教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想。在教学中应发挥自主学习的积极性,引导学生先独立探究,再进行合作交流。基于以上原因,这节课的设计我选择了“学案导学”法,就是是以学案为载体,导学为方法的教学活动,其显著优点是发挥学生的主体作用,突出学生的自学行为,倡导学生自主学习,自主探索,自我发现,是学生学会学习,学会合作的有效途径。其操作要领主要表现为先学后教、问题教学、导学导练、当堂达标。
补充说明两个没有体现出来的阶段
课前预习阶段
教师将学案精心编写好后,于课前发给学生,让学生在课前明确学习目标,并在学案的指导下对课堂学习内容进行自主的预习。同时教师要对学习方法进行适当的指导,如要控制自己的预习时间,以提高效率;可以要求学生用红笔划出书中的重点、难点内容;带着学案上的问题看书,并标出自己尚存的疑问,带着问题走进课堂;逐步掌握正确的自学方法,有意识地培养自主学习的能力等等。教师要有意识地通过多种途径获得学生预习的反馈信息,以使上课的讲解更具针对性。
课后巩固深化阶段
课后教师要指导学生完成预习时有疑问而课堂上未能完成的问题,对学案进行及时的消化、整理、补充和归纳。同时教师要将希望生的学案收起,仔细审阅。对学案上反映出的个性问题及课堂上未解决的共性问题及时安排指导和讲解。做到教学一步一个脚印,以收到实效。
体现学案的人文性:名人名言、建议的口气、温馨的提示等等,我想这些对于创设民主、和谐的课堂氛围,激发学生探究的积极性都是十分必要的。
实际问题与方程例3教学反思 篇2
我主讲了一节七年级的数学:实际问题与一元一次方程课,现将教学反思整理如下;
一、成功方面
1、本节课设计成学案的形式,有利于体现学生的主体地位,让学生充分参与到教学过程中来。
2、本节课的题目设计有利于学生理解商品销售问题中的标价、售价、进价、利润、利润率这些概念的含义及它们之间的关系,并能利用它们之间的关系来解题。
3、我把教材中的探究问题分解成三道题目,有利于学生由浅入深地掌握本节课的重难点。
4、教学方法采用学生先练教师后讲的模式,有利于培养学生的尝试意识,激发探究热情。
二、不足方面
1、对学生的学情把握不够好,简单问题强调、重复太多,耽误教学时间,没按预定的教学方案完成任务。
2、在从算术方法解决商品销售问题过渡到用方程方法解决销售问题时,设计不太好,学生不能自觉利用方程知识来解决问题。
3、思想理念放不开,对于探究问题可能有其他解法,实际上有学生也用了算术方法,但我没有给出评价,这样会挫伤学生学习的积极性。
二、努力方向
加强学习,厚积薄发;钻研教材,教法,一切教学活动的出发点都要把学生放在心上。
实际问题与方程例3教学反思 篇3
列方程解实际问题,与学生在这之前所采用的列算式解决实际问题,它们的共同点是,都以四则运算和常见数量关系为基础,都需要分析数量关系。它们的区别主要是思考方法不同。列方程解实际问题时,未知数能以一个字母为代表和已知数一起参加列式运算,解决了列算式解决实际问题中的局限性较大的缺点。
通过学习发现学生存在以下问题:
1.受算术解法影响,不习惯用方程方法来分析和解决问题。
2.不会找数量间的关系,或是有时找到了等量关系,但列不出方程。
3.在一个问题里含有多个未知数时,不知道该选择哪一个量来设未知数。
学生对列方程解法很不适应,针对以上问题,在教学中让学生用已掌握的算术解法,通过例题分别用算术法和列方程进行分析解答,然后说明两种方法各自的特点,让学生自己进行比较,通过对比让学生自己认识到方程解法的优越之处。学生经过一段时间的训练,应该可以克服算术解法的思维定势的影响,促使学生迅速适应方程的解法。仔细分析列方程解题的一般步骤可以发现,列方程中最关键的是怎样在题目中正确找出能够表示问题全部含义的等量关系。
应用题的教学,关键是理清思路,教给方法,提高解题能力。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法,一句话,教会学生学习的方法比教会知识更重要。
实际问题与方程例3教学反思 篇4
列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,运用所学的知识去解决实际生活中的问题的过程。经过第一课时的教学后,我发现大部分学生摆脱了格式上的困扰,新表现出来的列方程解决简单实际问题的难点是:根据实际问题找出等量关系式,再根据等量关系列出方程。因此我们又上了一节巩固练习课,帮助学生汇总、整理自己脑中千头万绪的“等量关系”:
首先,我们可以根据常用的数量关系确定等量关系。例如:一辆汽车每小时行70千米,多少小时能行560千米?这道题中蕴藏的是我们常用的数量关系,列出等量关系式:速度×时间=路程,路程÷时间=速度,由此可以列出方程:70X=560,560÷X=70
其次,我们还可以根据常见的公式确定等量关系。例如:一块长方形的地长32米,面积是800平方米,它的宽是多少米?这就用到了我们的长方形面积公式,可以列出等量关系式:长×宽=面积,面积÷宽=长由此可列出方程:32X=800,800÷X=32
最后,如果我们实在没有现成的数量关系去用,还可以根据题目中有比较意义的关键句确定等量关系。如:小华有邮票45枚,小华的邮票数比东东多5枚,东东有多少枚邮票?我们先找出题目中有比较意义的关键句:小华比东东多5枚,那么在东东的基础上再加6枚就是小华的邮票数,由此的到等量关系:东东的邮票数+5=小华的邮票数,列出方程:X+5=45。
数学题一道题可以变化出许多道题,我们每一道题都去做,是做不完的,效果也不一定好。所以我认为数学老师有一项很重要的任务就是,帮助学生整理头脑中的千头万绪,找出其中的关键点和共同的地方,能举一反三,这样我们的学习才能轻松起来。
实际问题与方程例3教学反思 篇5
一、4点说明
1、单元中的地位及重难点;
本节课是人教版七年级上册第三章第四节《实际问题与一元一次方程》的第二课时——销售中的盈亏问题的探究。通过本节课的学习对学生的要求是:能够找出实际问题中的已知数和未知数,分析他们之间的关系,找出问题中的等量关系,体会建立数学模型的思想。通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的过程,感受数学的应用价值,提高分析问题、解决问题的能力。
本节课是有理数、整式加减之后,以及在第三章2,3小节已经讨论过由实际问题建立一元一次方程和解决一元一次方的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题。本节课选择了具有一定综合性的问题(“销售中的盈亏问题”),设置了探究点,引导学生利用方程为工具进行具有一定深度的思考,具有承上启下作用,把全章所强调的以方程为工具把实际问题模型化的思想提到新的高度。一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,激发学生学习数学的兴趣,使学生在分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高,为以后几节列方程解生活中的实际问题埋下伏笔。
基于教材分析,我确定本节课的教学重难点是:建立实际问题的模型,让学生知道销售中的盈亏的算法。通过探究活动,加强数学建模思想,培养运用一元一次方程分析和解决实际问题的能力。
2、教学思想;
运用建模思想来指导七年级学生学习,在很大程度上是要在学生认知过程中建立起一种符号化的具有数学结构特征的“模型”载体,通过这样具有“模型”功能载体,帮助学生实现数学抽象,为后续学习提供强有力的基础支持。
3、育人思想;
通过对盈亏问题的探索,让学生体验数学来源于生活,又服务于生活,从而激发学生学好数学的热情,培养学生严谨的学习态度和与刻苦钻研的顽强毅力。
4、教与学的困惑、对策;
我的困惑
1、一部分学生不习惯用方程解决实际问题,偏爱算术方法;
2、学生掌握等量关系较弱,等量关系式列不出来,影响方程成形。
3、书写格式不规范,解方程过程中去分母,去括号,移项经常出错。
优化对策
1、优化教学设计,丰富数学课堂活动,让学生体会到列方程简单;
2、选择能充分展示用方程解题思维上独特优势的练习题;
3、设计有坡度,使学生会用已有知识解决一个问题,通过解决此问题有助于下一个问题的解决。
二、3个设计特色
1、教学模式:安康市初中数学“四环五课”型第二类概念课教学模式,即情景诱导—探究指导—展示归纳—变式练习。
2、探究提纲简洁明了,层层深入。使学生能够在完成第一个题目的基础上,能独立完成第二个题目;在完成第一个和第二个题目的基础上。又能独立完成第三个题目。
3。变式练习是在探究题目的基础上,通过改编得到的,着重体现了以探究为依据,以变式为重点。
三、2个感悟
1、在“情景诱导”中,激发学生兴趣。教师要通过智慧和艺术,充分展示数学的亲和力,拨动学生的好奇心,激发学生学习数学的原动力。结合授课内容,凭借图画、音乐、表演等手段,使学生有感、所悟、所惑、所想、所动。
2、在“探究”中,引发学生数学思考。给学生充足的时间和和空间经历观察、实验、探究、猜想、验证和推理,积累多样化的数学经验,引发学生思考,提出问题。反思问题,解决问题。
四、3个优化构想
1、设计时充分考虑师生互动性。
2、注重知识生成过程的教学,提高学生学习能力。
3、评价要客观全面,面向全体,注重全程,以达到了解,促进,激励学生的作用。
实际问题与方程例3教学反思 篇6
用方程解决生活中的问题,关键在于让学生能正确寻找问题中的数量关系式。掌握了数量关系式,问题便可迎刃而解。问题是学生在以前的学习中缺乏这样的训练,对如何分析数量关系没有一定的基础和经验,这给教学此内容带来了诸多不便,为此,教者在学生的数量关系的分析上还要多花时间,多帮助学生,“磨刀不误砍柴功”,为了能让学生顺利掌握新知,教者始终把数量关系的训练作为教学的主线贯穿在教学过程中。
在复习了等式的性质后,出示了“看图列方程并解答”的实际问题,学生有了前面的学习基础,很容易根据图中表示的等量关系列出方程,但这并不是我的最终目的,学生解答师生共同评价,在此我向学生抛出了问题:“你是根据什么关系来列方程的?”此时让学生初步感受到数量关系对列方程解决问题的重要。“那么,我们怎样写出数量关系式?”出示第2题复习题“根据条件,写出数量关系式。”学生通过这次的练习后,对解方程的已有了足够的经验储备,这时我不失时机地出示例题,让学生探究解决问题的途径,学生便自然地想到了数量关系,那列方程便也是水到渠成的事了。
实际问题与方程例3教学反思 篇7
本节公开课内容是一元一次方程的应用(工程与配套问题)。教学目标是会通过列方程解决“配套问题”和“工程问题”。教学的重、难点是能准确分析实际问题中的数量关系和等量关系,掌握列方程解决实际问题的一般步骤,现将本节课的得失总结如下:
一、在教学设计上我通过两方面来突破重、难点:
1、设计简单而对本节课有启发作用的前置作业让学生提前完成,使学生在上课前对要学的知识有一个初步的认识。
2、利用列表分析的方法,形象直观地把已知和未知的条件找出来,有利学生分析理解和找等量关系。
二、在教学过程中我采用小组交流与合作的`模式:
1、小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的参与情况。这样有利发现问题,培养学生勇气、才能和个性,使学生思维更清晰。
2、组外的交流,如果整个组的同学都完成老师布置的任务,则可以作为外援到其他组进行帮教,并利用加分的评价机制进行激励。通过这样的教学环节,既能对后进生进行帮扶,也能引领和鼓舞优生的学习积极性。这节课课堂学习气氛浓厚,讨论热烈,思维完全放开,有见地的结论不断涌现,达到了预期的教学目标。
三、课堂应注意改进的方面有:
1、把应用题的等量关系写出来不利于学生的思维发展,可以改成填空的形式。
2、课堂容量不足,应把重点放在找等量关系和列方程上,解方程部分可省略,这样就可以增加题量。
3、如果能把工作量变式为分数,能提升学生对工程问题的理解。
4、提出问题以后,一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。以上都是有待改进地方。
实际问题与方程例3教学反思 篇8
这节课主要让学生理解并掌握如何利用一元一次方程解应用题,将实际问题转化为数学问题,找等量关系,设合理的未知数,解决实际应用!
这节课的设置是由带学生参观动物园这一条主线,通过利用一元一次方程解决在参观过程中遇到的一些实际问题,如出发时的租车问题,到动物园要买票问题,以及到动物园以后遇到的一些问题等,都可以紧紧带着学生的思绪通过边游览边进行数学知识的学习,让学生深刻体会到数学与实际紧密性,从而增加学生学习数学的兴趣。
教学中要突出实际问题想数学问题的转化过程,关键是找等量关系,以及设未知数列方程,类比以前学过的列方程求解的知识,让学生自己通过探究、讨论找等量关系,以及设合适的未知数,进而列出一元一次方程对问题进行求解,通过学生展示探究结果,老师作简单总结点评,让学生体会数学的实用性。
在教学过程中有一些学生不能抓住题目给的已知条件找出等量关系,列出的方程不对,应正确引导学生如何将实际问题转化为数学问题、找等量关系,把文字术语转化成数学式子,列出正确的一元一次方程。
实际问题与方程例3教学反思 篇9
在教学一元一次方程和解决实际问题时,曾遇到这样一道开放性的题目:小明和小李在笔直的公路上行走,小明步行速度为4千米/时,小李步行的速度为6千米/时。小明出发1小时后,小李才出发,同时小李带了一条小狗在他们之间不间断地来回进行奔跑,小狗奔跑的速度为12千米/时。根据上面的事实提出问题并尝试去解答。
这是一道开放性问题,在教学中鼓励学生们大胆提出问题并尝试利用方程去解决,并与同伴交流自己的问题和解决问题的过程。在实际教学中学生们非常活跃,提出了很多有意义的问题:
(1)小李追上小明需要多少时间?
(2)小狗第一次追上小明需要多少时间?
(3)当小李追上小明时,小狗一共跑了多少千米?
(4)小狗第一个来回需要多长时间?
(5)小我狗第二个来回需要多长时间?
我们知道,这是一个无穷级数问题,问题提出来了,怎么办?是简单的一句话带过,还是给学生说明白及如何才能说明白?而此时,已到了下课时间,我只能把此问题留在课后,我表扬了胡志波同学用心思考了这个问题,并提出了一个非常有趣的问题,我们下一节课再来共同探讨这个问题,请同学们课后先思考。
课是结束了,而留下了新的问题,此问题如何解决?我陷入了深思。新的课标要求:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。在教学活动中,教师应激发学生的学习积极性,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。由此,我认为:
1、应循学生学习数学的心理规律,不能打击学生发现问题并提出问题的积极性。
2、使提出问题的学生有一种自豪感,通过此问题要进一步培养学生学习数学的兴趣和发现问题并提出问题的积极性。
3、通过此问题要让学生发现数学之美,并深深的喜欢它。
于是,我这样安排了下一节课的内容:
1、首先提问学生们,你们自主探索的结果是什么?
2、和学生们讲了《阿里斯追不上乌龟》的悖论:
阿里斯与乌龟赛跑,阿里斯的速度是乌龟速度的10倍,乌龟先行100米,阿里斯开始追赶;等到阿里斯走过100米时,乌龟又走了10米,等到阿里斯再走过10米时,乌龟又走了1米;阿里斯永远也追不上乌龟。这个悖论所反映的问题是:无穷多个时间段,是否就是无限长的时间?
实际问题与方程例3教学反思 篇10
用方程解决生活中的问题,关键在于让学生能正确寻找问题中的数量关系式。掌握了数量关系式,问题便可迎刃而解。问题是学生在以前的学习中缺乏这样的训练,对如何分析数量关系没有一定的基础和经验,这给教学此内容带来了诸多不便,为此,教者在学生的数量关系的分析上还要多花时间,多帮助学生,磨刀不误砍柴功,为了能让学生顺利掌握新知,教者始终把数量关系的训练作为教学的主线贯穿在教学过程中。
教者复习了等式的性质后,出示了看图列方程并解答的实际问题,学生有了前面的学习基础,很容易根据图中表示的等量关系列出方程,但这并不是教者的最终目的,学生解答师生共同评价,在此老师向学生抛出了问题:你是根据什么关系来列方程的?此时让学生初步感受到数量关系对列方程解决问题的重要。那么,我们怎样写出数量关系式?师出示第2题复习题根据条件,写出数量关系式。学生通过这次的练习后,对解方程的已有了足够的经验储备,这时老师不失时机地出示例题,让学生探究解决问题的途径,学生便自然地想到了数量关系,那列方程便也是水到渠成的事了。
另外,在解决问题的过程中,教者还鼓励学生从多角度对问题展开思考和研究,并要求学生把方程解法和算术方法进行比较,寻找之间的联系和区别,重点要求学生不能列出诸如X=0.06+1.39(例7)这样的方程,让学生在小组交流中明白为什么不能这样列。像学生在解答中出现36-X=2.5(练一练1)、144X=1.5(练习二7)这样的方程,教者应给予肯定,但也要向学生讲清这类方程用我们现在所学的等式性质解决有一定困难,只有以后进一步学习新的本领才能很容易解决这类,在这里既有对学生获得知识的肯定,也有善意的提醒和无声的激励,为学生进一步努力学习留下思考的空间和探究的天地。