植树问题教学反思通用版1000字11篇。
教案的编写要围绕教育教学的目的和任务,每位老师都应该致力于提升撰写教案的水平。教案不容易分散学生注意力,如何撰写教案才能够让学生们更重视呢?以下是栏目小编精心收集整理的植树问题教学反思通用版,带给大家。相信你能从中找到需要的内容!
植树问题教学反思通用版 篇1
植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。
一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
在处理教材时我把例题改为条件开放的植树问题,不规定间距,同时改小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。 在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:你能找出什么规律?启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、利用学生资源,加强生生合作
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。
四、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1) 直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如教室里的座位的事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以图片的形式让孩子们了解生活中与植树问题相似的现象,最后还把刘翔2004年雅典奥运会上精彩夺冠的场景再次重现,并出示110米栏的图,从中找到间隔,同时,渗透爱国主义教育。
这节课充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。
植树问题教学反思通用版 篇2
《植树问题》是人教版第八册的“数学广角”的内容。在植树问题的教学中,解题不是主要的教学目的,主要的任务是向学生渗透数学思想和方法,如:数形结合、化繁为简、植树模型、一一对应和化归等数学思想方法。在与南雅小学教研同行中我执教了《植树问题》第一课时内容。现对该课作如下反思:
1、异中求同,构建模型、解决问题。
“数学来源于生活,而又应该为生活服务”学生在探究完两端都种的植树问题后,让学生从生活实际中的手指、教室的灯、桌子的摆放、路灯的安装、站队等问题,直观地认识生活中的许多事例看上去跟植树问题毫不相似,但是只要善于观察、分析题中的数量关系,就明白它与植树问题的数量关系很相似,从而构建植树模型。并根据植树模型,应用所学知识解决生活中的实际问题,使学生充分感受数学知识来源于生活,又回归于生活。
2、动手操作,观察对比,发现规律。
通过画线段图在“20米、30米、40米的小路上植树的动手操作,使课堂成为充满活力的自己空间,从而激发学生的思维,让他们积极地去探究,使学生完整的体验“植树”这一实践活动。
从学生的展示来看,虽然得出的间隔数,棵数不相同。但通过观察对比发现:不同中存在共性,即:两端都栽,“植树的棵数=间隔数+1”的规律。
3、渗透思想,掌握方法,体验价值。
著名的数学家波利维亚说过“学习任何知识的最佳途径是由学生自己去发现”。因为这种发现理解最深刻,也最容易掌握其中内在规律的联系。通过在画图求解的过程中,让学生觉得画到100米很麻烦,产生另辟蹊径的念头,引导学生得出可以先从简单的问题研究起,发现规律后再来解决复杂的问题。从而渗透了化繁为简、数形结合、建模、一一对应和化归等数学思想方法。
在教学过程中还渗透了“猜想——化繁为简——画图验证——得出结论——应用结论”的思考方法和将复杂问题——简单问题——发现规律——解决问题的研究方法。使学生体验到“抽象问题直观化”,“复杂问题简单化”等基本策略在解决问题的过程中所发挥的重要作用和价值。
4、分析学情,研究教材,突出关键。
实际上,少数几个提前学习的学生掩盖了一个事实:更多的学生在学习前并不知道“间隔数”,丝毫没有考虑平均分的结果是什么,只是受问题的影响,认为每隔5米栽一棵,算出来一定是栽了20棵树,再加上“一边”“两端”的“搅和”,才出现20棵、21棵、22棵等多种答案。我认为全长、间隔长和间隔数是一种“铁三角”关系,而棵数和间隔数只是“单线联系”。
前者是主体,后者只是在间隔数的基础上,由于两端的种法不同而进行的“微调”。因此,只注重间隔数与棵数的关系,而忽略前面的主体显然是不妥的。
在这两层关系之间,间隔数起着“桥梁”的作用。因此,教学的关键是:讲清楚为什么“全长÷间隔长=间隔数”和“棵数=间隔数+1”。
5、教学实践,出现问题,找寻原因。
虽然原班教师说我充分调动了学生的积极性,但我认为:由于本人性格原因和缺乏儿童语言,在调动学生的学习积极性方面还做得不够理想。教学中,缺乏教学机智,贪多求全,不能见好就收。
如:学生在做倒数第二道巩固题时,离下课时间还有两分钟,我为了体现练习的层次性,将最后一题(拓展题)也让学生完成,导致时间不够。
课后一位听课老师对我说:我以为学生在做完倒数第二道巩固题,你就要进行课堂小结的,最后一题(拓展题)不出现该课也很完整。因此,在课堂艺术上我还要向同行多多学习。
植树问题教学反思通用版 篇3
本单元通过现实生活中一些常见的实际问题,借助线段图等手段让学生从中发现一些规律,抽取其中的数学模型,然后再用发现的规律來解决生活中的简单实际问题。植树问题通常是指沿着一定的路线植树,这条线段的总长度被树平均分为若干段(间隔),由于路线的不同、植树的要求不同、路线被分成的段数(间隔数)和植树的棵树之间的关系也就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、锯木头、架设电线杆等。这些问题中都隐藏着总数与间隔数之间的关系。
在植树问题中,植树的路线可以是一条线段,也可以是一条首尾相接的封闭曲线如圆形。即使是关于最基本的一条线段上的植树问题,也可能有不同的情形。如两端都要载,一端栽另一端不栽,两端都不栽。而在封闭曲线上的植树问题可以转化为一条线段上的植树问题中的一端栽另一端不栽的情况。
成功之处:
分类教学,抓住教学重难点,避免出现知识的空档。在教学中,我通过教学例1的两端都栽的情况。这类问题,学生对于求棵树比较容易理解。但是对于在公路的两旁栽树,学生往往容易出错,因此在教学的过程中,多出一些在两旁栽树的情况,让学生能够注意。另外,在这个教学中还注意让学生逆向思考,如:在学校门前小路的两边,每隔5米放一盆菊花(两端都放),从起点到终点一共放了20盆。这条小路长多少米?提醒学生逆向思考问题,也就是要先求一旁小路放多少盆,即20÷2=10(盆),然后再求间隔数,即10-1=9(个),最后求小路的全长,即9×5=45(米)。通过这样的训练,可以使学生不仅知其然,更知其所以然,还能培养学生逆向推理的能力。学生以后再见到难题,可以借助方程顺向思考问题,也可以逆向推理思考。经过这样的训练,学生就不至于感觉数学的困难了。这个单元容易出现的题目就是敲钟问题、锯木头问题、每个角都摆花的问题,这些问题可以一类一类地教学,把每个问题夯实,再进行综合训练,效果会更好。在这些问题中,尤其类似这样的问题要注意教学,如要在三角形花坛的边上种牡丹花,每边种10棵,可以怎样种?最少需要种多少棵牡丹花?这种类型题学生就要有多种考虑,一种是三个角都不种,每边种10棵,需要种10×3=30(棵);第二种是只种1个角,其他两个角不种,就需要种10×3-1=29(棵),第三种是种兩个角的情况,需要10×3-2=28(棵),第四种是种三个角的情况,需要10×3-3=27(棵),通过这样的教学可以避免直接教学课本习题中的棋子问题,学生就可以弄清楚为什么要用每边的数量乘边数候后还要减4。
在教学例1两端都栽的情况,也可以顺势教学其它情况特别是两端都不栽,除了画线段图理解之外,也可以让学生解释为什么要用间隔数减1,实际上中两都栽的情况中间隔数加1再减2,所以得到棵数等于间隔数减1。这样再教学只栽一端时,学生又可以在两端都不栽都情况下间隔数减1加1,就可以得到棵树等于间隔数,由此类推,学生更容易理解这三种情况之间的联系,不至于学一种记忆一种。
不足之处:
学生在学习例题时学得很好,一到接触到不同类型的植树问题就不知所措,还是存在搞不清哪种植树问题的情况。
再教设计:
在教学中,还是继续采取分类教学,既注重对分类教学的讲解,还要注意逆向思维的训练。
植树问题教学反思通用版 篇4
本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:
一、动手操作、合作交流、探究规律:
本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。
二、练习的设计独特、新颖、有梯度:
本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。
由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)
三、充分体现学生的主体作用及教师的主导作用:
本节课,我通过引导学生动手操作(模拟植树)——交流讨论(植树方案)——得出结论(三种植树问题的解决方法)——应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。
植树问题教学反思通用版 篇5
《走,我们去植树》教学反思
《走,我们去植树》是一首现代诗歌。这首诗歌通过描写少先队员参加植树活动的场景,展现了植树造林给祖国大地带来的喜人变化和给人类带来的好处,让学生明白植树是为自己、为他人、为人类、为社会、为今天、为未来造福,我们应该具有这种意识。这种情理交融的诗歌,很容易感动四年级的学生,但感动归感动,让他们真的行动起来,那是难的,特别现在城市的小孩真的很难有这种体验,课上我根据这句“荒滩、沟渠、山坡、公路……”省略号省略了什么?这个问题孩子很容易答出来。但是当我再问:他们还去了哪些地方?这下难倒了孩子,孩子还真没有说出几个地方。当有同学犹犹豫豫说出小区时,其他孩子不同意了“小区没地方栽。”“有人管,不能随便种树。”“都放满了车。”……这真是不怪孩子,城市的植树往往是由专门的劳动者来做,不然到处停满了车,要不然就被一些人开采来种菜,孩子还真没有这种经历。为此我给孩子提出这样的要求,在小区里,(允许)种上一棵花(树太大了),实在不行,在学校的花园里栽上一棵花。美化自己的生活环境,写出自己的感想。孩子结合诗歌,编写了《种花》,虽然不太押韵,但这是孩子的一个创造,时间久了,就会有着巨大的收获。
给孩子创造的机会,引导学生拥有这种创造。将来孩子才能给我们创造出一个崭新的未来。
植树问题教学反思通用版 篇6
植树问题是新人教版新课程标准实验教材五年级上册第七单元的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。
植树问题教学侧重点:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本单元的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。通过教学,不仅是向学生渗透某种数学思想方法,而且借助内容的教学发展学生的思维,提高学生一定的思维能力。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就
是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多
1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、利用学生资源,加强生生合作
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。这单元教学充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。
本单元教学不足的是:
一是没有举一反三的让学生进一步理解。
二是怎样让学生理解的更透彻,解题思路更清晰。功夫下的不深。 今后教学改进措施:
1、深钻教材,上课注重中差生,做到举一反三。
2、寻求学生最能理解的教学方法去教学。
3、课前一定要备学生。充分了解学情。
植树问题教学反思通用版 篇7
“植树问题”原本属于经典的奥数教学内容,是一种情况较为复杂的问题,但在生活中有许多类似的原型,新课程教材把它安排在四年级下册的“数学广角”中。其教学侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,借助内容的教学发展学生的思维,提高学生解决问题的能力。
本节课我教学了课本117页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:
一、重视数学模型的建立过程
学习数学的目的是为了应用数学,在应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,我在教学中设计了“形成猜想—化繁为简—合作交流—发现规律—梳理方法—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。
二、注重数学思想的渗透
在教学中,我直接例题导入,引导学生用画图方法模拟实际栽树。由于我把例题的数据改大了,因此在模拟实际画图时发生了矛盾,数字太大,不可能全部画下来或是太麻烦、太浪费时间了,就此向学生渗透复杂问题简单化的思想,让学生选择短距离的路用画图的方式得出结果。在这个过程中,学生通过猜想、实验、推理、交流等活动,
既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。
三、注重探究精神和能力的培养
教学中,我创设情境,鼓励学生用画图的方法来验证猜想的合理性。其后,改变间距,让学生通过画图的方法再次验证,并完成表格,从而发现规律。在用“数形结合”方法探究规律的过程中,学生的动手能力、合作能力和实践精神都得到一定的培养。
四、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我做了两方面的工作:一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题统称为植树问题”;二是进行变式练习。我设计了6道练习题,引导学生进一步体会,现实生活中的许多事件,都含有与植树问题相同的'数量关系,它们都可以利用植树问题的模型来解决它,从而使学生感悟数学建模的重要意义。
这节课虽然不乏成功之处,但也有许多遗憾。
一是操作的实效性。在学生画图探究间隔数和棵数的规律时,在规定时间内完成任务的小组比较少。这有两方面的原因:首先是我没有充分调动学生动手的积极性,其次是操作方法交待不够清楚,以致部分学生无从下手,出现操作困难,影响操作效果。
二是练习设计不够精。因为希望把尽可能多的题型呈现给学生,
所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。
植树问题教学反思通用版 篇8
抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方针,等等,它们中都隐藏着总数和间隔数之间的关系问题,通常把这类问题统称为植树问题。
成功之处:
1.利用例1题目,渗透研究植树问题的.思想方法:复杂问题——简单问题——发现规律——解决问题。让学生经历探索复杂问题的过程,经历猜想、实验、推理等数学探索的过程,掌握研究问题的思想方法,渗透“化繁为简”的数学思想方法,尝试从数学的角度运用所学的知识和方法寻找解决问题的策略。教学中启发学生利用在 10米、15米、20米的小路一侧栽树,通过画线段图借助图形让学生体会当两端都栽、两端都不栽、只栽一端,棵数与间隔数之间的关系,从而发现植树问题不同情况的数学模型,进而解决例1的问题,学生也就能快速解决问题了,并且能够做到不仅知其然,还知其所以然。
2.渗透了一一对应的数学思想方法。通过线段图的理解,学生发现了植树问题的不同情况的数学模型。为了更深入理解这一数学模型隐含的数学思想方法,让学生观察线段图,一棵树对应一个间隔,当两端都栽时,发现最后一棵树没有对应的间隔,所以棵数=间隔数+1;当两端都不栽时,发现最后一个间隔没有对应的棵数,所以棵数=间隔数-1;当只栽一端时,发现最后一棵数对应最后一个间隔,所以棵数=间隔数
不足之处:
由于归纳总结了三种类型的植树问题,导致练习只做了一题,学生没有及时的进行巩固,知识夯实不够充分。
再教设计:
控制好教学节奏,增加练习量,夯实巩固所学知识。
植树问题教学反思通用版 篇9
我在上完这节课后有以下思考:
1、在探究活动中培养学生学习兴趣
植树问题是数学中一个独立的单元,其内容和生活联系非常密切。这一课我们不仅是要教给学生知识,更重要的是要学生领悟研究复杂问题可以从简单问题入手。因此我设计了一道数字较大的问题,让学生通过画图来解决,在画图过程中学生就会发现没法解决。从而启发学生可以自己选择数字小的来画一画。从而让学生领悟解决复杂问题要先想简单的。而且,可以在这种与平常不一样的活动中,获得真实感知和学习经验,更有利于培养学生学习数学的兴趣。
2、在探究过程中感受数学
课程标准特别强调:数学活动必须向学生提供充分的从事数学活动的机会,帮助他们在自主探究和合作交流过程中获得广泛的数学活动经验。整节课,每一环节我都设计让学生动手操作,合作交流。学生在不断的操作和交流中,经历了观察、发现和感受的全过程;学到了解决问题的方法,并获得了更深层次的情感体验。
本节课上的非常顺利,效果也不错。但总觉得有些程序化,在引导学生思考和操作的过程中,对学生规定的有些死。如果在探究两种栽树方法的规律时,再大胆的放手让学生自主的去探究,效果可能会更好些。
植树问题教学反思通用版 篇10
《植树问题》是人教版新课程标准实验教材五年级上册“数学广角”的内容,曾经被演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发现在诸多课例中,存在着这样一个共同的特点:任课教师都特别重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都栽”“只栽一端”与“两端都不栽”。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结&rdq
uo;的模式进行教学。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。同时在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
通过对教材和各种相关的教学资料的深入解读,我认为“植树问题”就教学而言,可分为两个不同的教学目标:
一、明确引出“间隔数”与“棵数”这两者的关系,突出“一一对应”的思想,并以此为基础分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,使学生真正理解棵数与间隔数的关系。
二、总结出相关的计算公式“总长÷间距=间隔数”,并通过公式帮助学生更好地去掌握这一解题模式。
反思整个教学过程,我认为这节课在以下几个方面还是处理得比较好:
1、这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。
2、我注重教学内容的整体处理,对教材进行了整合和重构,设计的例题是一个开放性的题目,开放性的设计,使课堂成为充满活力的自由空间,从而激发学生的思维,让他们积极地去探究,使学生完整的体验“植树”这一实践活动,让学生比较系统地认识到在直线上植树有三种情况,即两端都栽;两端都不栽;只栽一端。
3、植树问题的思维有一定的复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的过程中,通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。之后,再引导学生用“一一对应”的思想,举起右手比划比划,分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种情况下,棵数与间隔数的关系。
4、学生列式计算出三种栽法的棵数后,我引导学生思考:这三种情况,我们在列式计算棵数时,第一步都是先求什么,怎样求?通过学生的小组讨论后得出:要求棵数,得先求间隔数,并清楚地总结出相关的计算公式“总长÷间距=间隔数”,通过公式帮助学生更好地去掌握这一解题模式。
5、注意反映数学与人类生活的密切联系。巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。
我感觉这节课的不足之处有以下几点:
1、数学的思想方法是数学的灵魂。本册安排“植树问题”的目的之一就是向学生渗透复杂问题从简单入手的思想,本节课没有让学生体验到“复杂问题简单化”的解题过程。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期待日后调整改进。
3、对课堂的生成问题处理还不够灵活,不能进行很好的利用。
在今后的教学中,希望能通过自己一点一滴的积累和改进,提高自己的业务水平和调控、处理课堂生成的能力,在不久的将来,能看到更棒的自己。
植树问题教学反思通用版 篇11
《植树问题》是人教版义务教育教科书五年级数学上册第七单元数学广角的内容。这一内容主要涉及到的知识点有:两头植、两头都不植、封闭情况下的植树问题(一头植和一头不植)这三种情况。怎样才能让学生即能学会,还要学的轻松呢,我反复研读教材,发现教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想.模型思想,同时使学生感悟到应用数学模型解题所带来的便利。我这节课重点教学两端都栽的植树问题,主要目标是向学生渗透复杂问题从简单入手,奇妙运用数形结合的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。
一、通过自主探索的活动,渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。整节课设计基于我班学生实际情况,课前创设情境让学生欣赏美丽的风景,同时引导学生明确要学习的内容,紧接着引出例题,探讨植树问题,不规定间距,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。可引导通过“以小见大”数形结合来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。这节课的设计依据了认知规律:通过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角度应用拓展。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。
二、关注植树问题模型的拓展和应用,反映数学与生活的密切联系。“植树问题”通常是指沿着一定的路线,这条路线的总长度被“树”平均分成若干间隔,由于路线不同、植树要求不同,路线被分成的间隔数和植树棵数之间的关系就不同。现时生活中类似的问题还有很多,如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。让学生从中悟出植树问题的模型它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。在学生已经自主地寻找到植树中前两种的规律后,我适时的提出在我们的生活中有没有类似植树的情况呢?通过学生的举例,让他们进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。我并没有就此罢手,而是让学生找找生活中的类似现象,如栽电线杆,排座位,安路灯,插彩旗等等,在学生从具体生活中抽象出数学现象后,又再一次让学生运用规律解决形式各异的生活问题,使数学知识运用于生活,学生深深地体会到数学的价值与魅力。整节课,大多数学生的思维表现的很活跃。
三、渗透数形结合的思想,培养学生借助图形解决问题的意识。植树问题的思维有一定的复杂性,学生刚接触这个内容,很有难度。所以,我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的过程中,通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。之后,再引导学生用“一一对应”的思想,举起左手,看指头有五个,间隔就是四个,明白植树问题的道理与此相似,再举起右手比划比划,分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种情况下,棵数与间隔数的关系。数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;初步理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的能力。由于使用了数形结合的方法,植树中棵树和间隔数之间的关系便迎刃而解,且容易理解。数学的思想方法是数学的灵魂。本册安排“植树问题”的目的之一就是向学生渗透复杂问题从简单入手的思想,“复杂问题简单化”的解题过程。再次,联系生活拓展思维。有意义的学习是学生在具体情景中体验自主建构,体验和建构是学生学习的关键。体验是建构的基础,没有体验,建构就没有意义。体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能达到继续建构学习的水平。所以,这节课我多次向学生提供体验的机会,而且创设能够激发学生共鸣的情境。从自身、教室、做操、楼房等身边熟悉的事物,引发学习兴趣,产生共鸣,激发探究欲望。
四、本节课的不足:
1、把学生估计过高,有一部分学生知道了全长和间距不会求间隔数,我以为这是学生早已经学过的而且经常用到的,所以没特别的复习,导致了基础较差的学生无法下手。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期待日后调整改进。
3、对课堂的生成问题处理还不够灵活,不能进行很好的利用。
教学是一门遗憾的艺术,虽然这节课我很尽心尽力,但也留下了很多遗憾,新的教法的一种大胆的尝试过程,总在摸索中不断完善。在准备这节课时我参考了很多资料,学习了很多方法,为的是让这节课的遗憾能少一些。我把握每一个细节,问题及时解决,站在学生的角度去思考问题,使得数学学习的思想方法真正得以渗透。