你的位置:
  • 范文大全
  • >教师范文
  • >导航
  • >高中数学试讲万能模板(通用九篇)
  • 高中数学试讲万能模板

    发表时间:2024-10-28

    高中数学试讲万能模板(通用九篇)。

    高中数学试讲万能模板 篇1

    一、教学目标

    (一)知识与技能

    1、进一步熟练掌握求动点轨迹方程的基本方法。

    2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

    (二)过程与方法

    1、培养学生观察能力、抽象概括能力及创新能力。

    2、体会感性到理性、形象到抽象的思维过程。

    3、强化类比、联想的方法,领会方程、数形结合等思想。

    (三)情感态度价值观

    1、感受动点轨迹的动态美、和谐美、对称美

    2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气

    二、教学重点与难点

    教学重点:运用类比、联想的方法探究不同条件下的轨迹

    教学难点:图形、文字、符号三种语言之间的过渡

    三、、教学方法和手段

    【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

    【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

    【教学模式】重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。

    高中数学试讲万能模板 篇2

    教学目标:

    1.掌握基本事件的概念;

    2.正确理解古典概型的两大特点:有限性、等可能性;

    3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.

    教学重点:

    掌握古典概型这一模型.

    教学难点:

    如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.

    教学方法:

    问题教学、合作学习、讲解法、多媒体辅助教学.

    教学过程:

    一、问题情境

    1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?

    二、学生活动

    1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;

    2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;

    (2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,

    这6种情况的可能性都相等;

    三、建构数学

    1.介绍基本事件的概念,等可能基本事件的'概念;

    2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);

    3.得出随机事件发生的概率公式:

    四、数学运用

    1.例题.

    例1

    有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)

    探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)

    探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?

    学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.

    探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.

    (设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)

    例2

    一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中

    一次摸出2只球,则摸到的两只球都是白球的概率是多少?

    问题:在运用古典概型计算事件的概率时应当注意什么?

    ①判断概率模型是否为古典概型

    ②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.

    教师示范并总结用古典概型计算随机事件的概率的步骤

    例3

    同时抛两颗骰子,观察向上的点数,问:

    (1)共有多少个不同的可能结果?

    (2)点数之和是6的可能结果有多少种?

    (3)点数之和是6的概率是多少?

    问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?

    学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.

    问题:点数之和是3的倍数的可能结果有多少种?

    (介绍图表法)

    例4

    甲、乙两人作出拳游戏(锤子、剪刀、布),求:

    (1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.

    设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.

    2.练习.

    (1)一枚硬币连掷3次,只有一次出现正面的概率为_________.

    (2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..

    (3)第103页练习1,2.

    (4)从1,2,3,…,9这9个数字中任取2个数字,

    ①2个数字都是奇数的概率为_________;

    ②2个数字之和为偶数的概率为_________.

    五、要点归纳与方法小结

    本节课学习了以下内容:

    1.基本事件,古典概型的概念和特点;

    2.古典概型概率计算公式以及注意事项;

    3.求基本事件总数常用的方法:列举法、图表法.

    高中数学试讲万能模板 篇3

    一、教材分析:

    1、教材的地位与作用:

    线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

    2、教学重点与难点:

    重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。

    难点:在可行域内,用图解法准确求得线性规划问题的最优解。

    二、目标分析:

    在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。

    知识目标:

    1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;

    2、理解线性规划问题的图解法;

    3、会利用图解法求线性目标函数的最优解.

    能力目标:

    1、在应用图解法解题的过程中培养学生的观察能力、理解能力。

    2、在变式训练的过程中,培养学生的分析能力、探索能力。

    3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。

    情感目标:

    1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。

    2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;

    3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。

    三、过程分析:

    数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节:

    1、创设情境,提出问题;

    2、分析问题,形成概念;

    3、反思过程,提炼方法;

    4、变式演练,深入探究;

    5、运用新知,解决问题;

    6、归纳总结,巩固提高。

    高中数学试讲万能模板 篇4

    前言

    为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

    在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。

    不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

    1、集合与函数概念实习作业

    一、教学内容分析

    《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

    二、学生学习情况分析

    该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的`“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

    三、设计思想

    《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

    四、教学目标

    1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

    2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

    3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

    五、教学重点和难点

    重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

    难点:培养学生合作交流的能力以及收集和处理信息的能力。

    六、教学过程设计

    【课堂准备】

    1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

    2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

    高中数学试讲万能模板 篇5

    各位评委、各位老师:大家好!

    我叫李长杉,来自甘肃省嘉峪关市第一中学。今天我说课的课题是《一元二次不等式的解法》(第一课时)。下面我将围绕本节课"教什么?"、"怎样教?"以及"为什么这样教?"三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。

    一、教材内容分析:

    1.本节课内容在整个教材中的地位和作用。

    概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。

    2.教学目标定位。

    根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。

    3.教学重点、难点确定。

    本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。

    二、教法学法分析:

    数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了

    ①创设情景——引入新课,

    ②交流探究——发现规律,

    ③启发引导——形成结论,

    ④练习小结——深化巩固,

    ⑤思维拓展——提高能力。

    五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。

    三、教学过程分析:

    1.创设情景——引入新课。我们常说"兴趣是最好的老师",长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以2004年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。

    2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。

    3.启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就 △>0,△0或ax2+bx+c0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须

    ①将二次项系数化为正数,

    ②求解二次方程 ax2+bx+c=0 的根,

    ③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为"三步曲"法)。

    4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1-4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。

    5.延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。

    四、课堂意外预案:

    新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到"意外"的问题,我在平时的教学中重视对"课堂意外预案"的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个"意外预案".

    1.学生在做课本练习1(x+2)(x-3)>0 时,可能会问到转化为不等式组{ 或{ 求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。

    2.根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0 可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组{ 来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。

    以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家!

    高中数学试讲万能模板 篇6

    说课:古典概型

    麻城理工学校谢卫华

    (一)教材地位及作用:本节课是高中数学(必修

    3)第三章概率的第二节古典概型的第一课时,是在

    随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

    根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率;

    根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

    (二)根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订教学目标:

    1.知识与技能

    (1)理解古典概型及其概率计算公式(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率2.情感态度与价值观

    概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神

    (三)教学方法:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征,观

    察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

    (四)教学过程:

    一、提出问题引入新课:在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;

    试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。

    教师最后汇总方法、结果和感受,并提出问题:1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?

    二、思考交流形成概念:学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

    基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。给出例题1,让学生自行解决,从而进一步理解基本事件,然后让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性)。我们将具有这两个特点的概率模型称为古典概率概型,简称

    古典概型。

    三、观察分析推导公式:教师提出问题:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率

    结果,发现其中的联系。实验一中,出现正面朝上的概率与反面朝上的概率相等,即

    1“出现正面朝上”所包含的基本事件的个数,试验二中,出现各个点的概率相等,即

    P(“出现正面朝上”)==

    2基本事件的总数3“出现偶数点”所包含的基本事件的个数,根据上述两则模拟试验,可以概括总结出,古典

    P(“出现偶数点”)==

    6基本事件的总数

    概型计算任何事件的

    的理解,教师提问:在使用古典概型的概率公式时,应该注意什么?学生回答,教师归纳:应该注意,(1)要判断该概率模型是不是古典概型;

    (2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

    四、例题分析推广应用:通过例题2及3,巩固学生对已学知识的掌握,提高学生分析问题、解决问题的能力。让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。适时利用列表数形结合和分类讨论等思想方法,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。

    五、总结概括加深理解:学生小结归纳,不足的地方老师补充说明。使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

    (五)布置作业P123练习1、2题(六)板书设计

    3.2.13.2.1古典概型古典概型试验一试验二基本事件

    古典概型概率

    计算公式

    例3列表

    例1树状图古典概型

    例2

    以上是我对《古典概型概型》这节课的理解和处理方法,欢迎各位专家朋友批评指正,谢谢!

    说课教案:古典概型

    麻城理工学校谢卫华

    高中数学试讲万能模板 篇7

    一、 地位和作用:

    本节内容处于数学北师大版六年级上册第三章最后一节.从这一章开始利用字母表示数(即符号化),它深刻揭示存在于一类实际问题中的共性.有助于人们对显示世界的认识,它的各种表示方法(如公式法、表格法、图象法等),不仅为解决实际问题提供了重要策略,而且为数学交流提供了有效的途径,它的模型化方法、函数思想以及推理的方法也为数学本身和其它学科的研究提供了基础.

    二、 教学目标:

    根据《课标》中“强调学生的数学活动,发展学生的数感、符号感及应用意识”确定了如下的知识目标和能力目标:

    1.经历探索数量关系,运用符号表示规律,通过运算、验证规律的过程.

    2.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律.

    3.提高学生分析问题、解决问题的能力.

    根据“义务教育阶段的数学课程的出发点是促进学生全面、持续、和谐地发展”确定了如下的情感目标:通过学生动手、动脑、利用转化、类比的方法去探索、培养学生的观察能力、交往协作能力、动手操作能力、归纳概括能力、创新能力.

    三.教材重点、难点的确定.

    根据“材设计关注的是学生是否理解字母表示的含义,能否用字母表示和能否积极从事数量关系的探索过程”,从而确定了教学重点是能将探索发现数学规律并能正确验证.对于刚刚接触用字母表示数的学生来说,整个过程需要大胆进行探索、猜想、归纳、验证等能力的培养比较困难,因此发现数学规律也是本节的教学难点.

    如何突出重点和难点71页

    教法:根据本节课的特点,采用探究式的教学法.

    学法:根据初一学生知识储备量小、学生性格好动的特点,采用分组、合作、交流的学习方法.

    四.教学流程:

    1.巧用情景引入课题,通过儿歌“一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿…”引出问题“n只青蛙几张嘴,几只眼睛几条腿?”从中鼓励学生发现规律,尝试用字母符号表达规律.

    2.讲授新课:首先出示某年某月的日历,然后根据问题探讨日历中的`规律.由于这是本节的重点和难点,根据学生情况,为了突破难点,对于课本的编排从新调整.提出了如下的几个问题:①日历中同一行中连续三个数之间有什么关系?②日历中同一列中相邻三个数之间有什么关系?③日历中斜着的三个数之间有什么关系?④用长方形框住的四个数有什么关系?⑤用正方形框住的九个数有什么关系?先让学生用具体的数来回答问题,然后上升到用字母来反映规律.从而让学生体会由特殊到一般的方法。

    教师评价:71页另外教师不断鼓励学生发现、表达、合理解释.

    以上主要采用教师启发引导式的方法.

    其次,让学生动手折纸完成课后随堂练习第2题,目的是换一种活动方式.本题主要由学生独立完成.

    最后,通过以上的日历、折纸,对学生分组完成做一做.本题采用分组合作的方式进行.

    五. 学情预测:

    优点:问题的层次递进符号学生的实际情况.

    缺点:规律找到但是表达不准或不正确,如去括号问题,另外缺乏验证.

    针对缺点采用的弥补方法是:适当布置有关去括号知识的问题,强调规律探索中的验证这一环节的重要性和必要性.

    六.总结反思和理念:

    探索规律要用到归纳、推理,它是一种重要的数学思维方法,数学史上的一些发现如哥德巴赫猜想等都是通过探索、总结、猜想而得到的,但是要注意猜想的验证。

    高中数学试讲万能模板 篇8

    一、教材分析

    本节知识是必修五第一章《解三角形》的第一节资料,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,并且解三角形和三角函数联系在高考当中也时常考一些解答题。所以,正弦定理和余弦定理的知识十分重要。

    根据上述教材资料分析,研究到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

    认知目标:在创设的问题情境中,引导学生发现正弦定理的资料,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

    本事目标:引导学生经过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维本事,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

    情感目标:面向全体学生,创造平等的教学氛围,经过学生之间、师生之间的交流、合作和评价,调动学生的主动性和进取性,给学生成功的体验,激发学生学习的兴趣。

    教学重点:正弦定理的资料,正弦定理的证明及基本应用。

    教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时确定解的个数。

    二、教法

    根据教材的资料和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究资料,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,进取探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的本事线联系方法与技能使学生较易证明正弦定理,另外经过例题和练习来突破难点

    三、学法

    指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、团体等多种解难释疑的尝试活动,将自我所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维本事,构成了实事求是的科学态度,增强了锲而不舍的求学精神。

    四、教学过程

    第一:创设情景,大概用2分钟

    第二:实践探究,构成概念,大约用25分钟

    第三:应用概念,拓展反思,大约用13分钟

    (一)创设情境,布疑激趣

    “兴趣是最好的教师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不明白AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮忙别人的热情和学习的兴趣,从而进入今日的学习课题。

    (二)探寻特例,提出猜想

    1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

    2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

    3.让学生总结实验结果,得出猜想:

    在三角形中,角与所对的边满足关系

    这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

    (三)逻辑推理,证明猜想

    1.强调将猜想转化为定理,需要严格的理论证明。

    2.鼓励学生经过作高转化为熟悉的直角三角形进行证明。

    3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

    4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

    (四)归纳总结,简单应用

    1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

    2.正弦定理的资料,讨论能够解决哪几类有关三角形的问题。

    3.运用正弦定理求解本节课引入的三角形零件边长的问题。自我参与实际问题的解决,能激发学生知识后用于实际的价值观。

    (五)讲解例题,巩固定理

    1.例1.在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

    例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

    2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

    例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

    (六)课堂练习,提高巩固

    1.在△ABC中,已知下列条件,解三角形.

    (1)A=45°,C=30°,c=10cm

    (2)A=60°,B=45°,c=20cm

    2.在△ABC中,已知下列条件,解三角形.

    (1)a=20cm,b=11cm,B=30°

    (2)c=54cm,b=39cm,C=115°

    学生板演,教师巡视,及时发现问题,并解答。

    (七)小结反思,提高认识

    经过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

    1.用向量证明了正弦定理,体现了数形结合的数学思想。

    2.它表述了三角形的边与对角的正弦值的关系。

    3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

    (从实际问题出发,经过猜想、实验、归纳等思维方法,最终得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅仅收获着结论,并且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生进取性,使数学教学成为数学活动的教学。)

    (八)任务后延,自主探究

    如果已知一个三角形的两边及其夹角,要求第三边,怎样办?发现正弦定理不适用了,那么自然过渡到下一节资料,余弦定理。布置作业,预习下一节资料。

    高中数学试讲万能模板 篇9

    总结比较方法: 两个小数比大小,先比整数部分,如果整数部分相同,就从十分位开始依次比较小数部分。

    2.出示巩固练习。

    3.知识迁移

    在这个环节上,我通过两个游戏:让学生们比较下面每组中两个数的大小。 0.286<0.514 0.51<0.52

    这样学生们能够进一步掌握小数的大小比较方法,进行一次知识的延伸与扩展。从而让学生成了学习的主人,自觉地投入到学习当中去。

    教师提问:根据你已有的知识经验,和你对小数的了解,能试着说一说小数怎样比大小吗?

    在学生们回答的基础上总结:(比较时是从整数部分开始比较,整数部分大,这个小数就大,整数部分相同,就比较十分位,十分位大,这个数就大.)

    4.比较分析

    教师:我们归纳出来的比较小数大小的方法与你最初的猜测相比,有什么不同?

    1、出示运动会上110米栏成绩单完成练一练.

    通过这节课的学习,同学们已经掌握了小数的大小比较的方法,谁能说一说小数的大小比较方法吗?希望能用我们所学的知识去解决生活中的一些实际问题。

    【高中数学试讲万能模板(通用九篇)】相关推荐
    常用的对学生中考的祝福语集锦 【精】

    时间弹指一挥间,中考学生们的初中生活已经接近尾声,中考是一个公平竞技的平台,是改变命运最重要的一次机会,在临近时中考亲戚好友也都想把祝福送给中考学生,有哪些关于中考祝福语模板呢?教师范文大全小编特地为您收集整理“常用的对学生中考的祝福语集锦”,希望能对你有所帮助,请收藏。...

    单篇精选: 数学日记700字

    在平时的学习生活中,我们可能会按照个人习惯写一些文章,掌握范文的撰写对自己会有很大的帮助,在哪里可以找到相关的范文呢?下面是小编为您精心收集整理,为您带来的《单篇精选: 数学日记700字》,仅供参考,希望对您有帮助。今天是20xx年的春节,早晨一起床,我们一家三口就穿上了各自的新衣服,开始忙活了起来...