有理数课件十一篇。
学习数年,我们读过很多范文,不少优秀范文是学生写出来的, 阅读范文可以帮助我们平复心情,让自己冷静思考。高质量的范文能供更多人参考,你有没有看过的优秀范文的参考范文呢?下面是小编帮大家编辑的《有理数课件十一篇》,希望能为您提供更多的参考。
有理数课件【篇1】
教学目标
1.使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过有理数的乘法运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学于实践并反作用于实践。
教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法法则的理解.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)[
4.根据有理数加减运算中引出的新问题 主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有 理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引导学生 比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结 论 ,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.
继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.
因此,在进行有理数乘法时,需要时时强调:先定符号后定值.
三、运用举例,变式练习
例 某一物体温度每小时上升a度,现在温度是0度.
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a =-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教师引导学生检验一下(2)中各结果是否合乎实际.
课堂练习
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9;
(4)(-6)×1; (5)(-6)×(-1); (6) 6×(-1);
(7)(-6)×0; (8)0×(-6);
2. 口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负 数,也可以是正数或0.
3.填空:
(1)1×(-6)=______;(2)1+(-6)=____ ___;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
4.判断下列方程的解是正数还是负数或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小结
今天主要学习了有理数乘法 法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.
五、作业
1.计算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0.001); (5) -4.8×(-1.25); (6)-4.5×(-0.32).
2.填空(用“>”或“<”号连接):
(1)如果 a<0,b<0,那么 ab _______ _0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0时,那么a ____________2a;
( 4)如果a<0时,那么a __________2a.
探究活动
问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?
答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1 ?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.
道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.
有理数课件【篇2】
一、 教学目标:
知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。
过程与方法:通过把减法运算转化为加法运算,向学生渗 透转化思想,通过有理数的 减法运算,培养学生的运算能力。
情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
二、教学重点:运用有理数的减法法则,熟练进行减法运算。
三、教学难点:理解有理数减法法则。
四、教 材分析:本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一 册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
五、教学方法:师生互动法
六、教具:幻灯片
七、课时:1课时
八、教学过程:
1、计算(口答):
(1) 1+(-2)
(2) -10+(+3)
(3) +10+(-3)
2、出示幻灯片二:
如图:
这是20xx年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
教师引导观察
教师总结:这就是我们今天要学习的内容(引入新课,板书课题)
1、师:谁能把10-3=7这个式子中的性质符号补出来呢?
(+10)-(+3)=7
再计算:(+10)+(-3),师让学生观察两式结果,由此得到:
(+10)-(+3)=(+10)+(-3)
观察减法是否可以转化为加法 计算呢?是如何转化的呢?
(教师发挥主导作用,注意学生的参与意识)
2、再看一题:
计算:(-10)-(-3)
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与-3相加会得到-10,那么这个数是多少?
问题:计算:(-10)+(+3)
教师引导,学生观察上述两题结果,由此得到
(-10)-(-3)=(-10)+(+3)
教师进一步引导学生观察式子,你能得到什么结论呢?
教师总结:由以上两式可以看出减法运算可以转化成加法运算。
教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?
教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。
强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)
3 、例题讲解:
出示幻灯片三(例1和例2)
例1计算:
(1)6-(-8)
(2)(-2)-3
(3)(-2.8)-(-1.7)
(4)0-4
(5)5+(-3)-(-2)
(6)(-5)-(-2.4)+(-1)
教师板书做示范,强调解题的规范性, 然后师生共同总结解题步骤,(1)转化(2)进行加法运算。
例2:小明家蔬菜大棚的气温是24℃,此时棚外的气温是-13℃,棚内气温比棚外气温高多少摄氏度?
师巡视指导,最后师生讲评两个学生的解题过程。
课后练习1、2
教师巡视指导
师组织学生自己编题
1、 谈谈本节课你有哪些收获和体会?[
2、本节课涉及的数学思想和数学方法是什么
教师点评:有 理数减法法则是一个转化法则,要求同学们掌握并能应用进 行计算。
课堂检测(包括基础题和能力提高题)
1、-9-(-11)
2、3-15
3、-37-12
4、水银的凝固点是-38.87℃,酒精的凝固点是-117.3℃。水银的凝固点比酒精的凝固点高多少摄氏度?
学生思考后抢答,尽量照顾不同层次的学生参与的积极性。
学生观察思考如何计算
学生观察思考
互相讨论
学生口述解题过程
由两个学生板演,其他学生在练习本上做
第1小题学生抢答
第2小题找两个 学生板演。
学生回答
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
综合考查学以致用
既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础
创设问题情境,激发学生的认知兴趣。
让学生通过尝试,自己认识减法可以转化为加法计算。
学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力
可以培养学生严谨的学风和良好 的学习习惯,同时锻炼学生的表达能力
可以照顾不层次的学生,调动学生学习积极性。
通过练习让学生进一步巩固新知,体验知识的应用性。
能增强学生学习的主动性和参与意识。
学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
锻炼学生综合运用知识,独立解题的能力
板书设计:
2.6有 理数的减法
有理数减法法则:
(+10)-(+3)=(+10)+(-3)
( -10)-(-3)=(-10)+(+3)
减去一个数等于加上这个数的相反数. 例1:
例2:
练习:
教学反思:
本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有 一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。
有理数课件【篇3】
人教版数学有理数乘法教学设计
设计理念
1.注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。教学中要注重让学生通过自己的.活动来获取、理解和掌握这些知识。
2.本课注意降低了对运算的要求,尤其是删去了繁难的运算。注重使学生理解运算的意义,掌握必要的基本的运算技能。
3.数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
教学目标
1.使学生掌握有理数乘法的运算律,并利用运算律简化乘法运算。
2.使学生掌握多个有理数相乘的积的符号法则。
过 程 与 方 法: 培养学生观察、归纳、概括及运算能力。
情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。
重点 乘法的符号法则和乘法的运算律。
难点 积的符号的确定。
教学过程
一、复习引入;
观察并计算
①(-2)3456
②(-2)(-3)456
③(-2)(-3)(-4)56
④(-2)(-3)(-4)(-5)6
⑤(-2)(-3)(-4)(-5)(-6)
二、自主学习探索:
1.以上几个式子有何区别与联系?
2.你认为多个数相乘先干什么?
3.你能总结出什么规律?
有理数课件【篇4】
一、课题§2.5有理数的减法
二、教学目标
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;
2.培养学生观察、分析、归纳及运算能力.
三、教学重点和难点
有理数减法法则
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;
2.培养学生观察、分析、归纳及运算能力。
有理数减法法则。
有理数的减法转化为加法时符号的改变。
电脑、投影仪
习题:
一、从学生原有认知结构提出问题
1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:(1)____+6=20; (2)20+____=17;(3)____+(-2)=-20; (4)(-20)+___=-6.
二、师生共同研究有理 数减法法则
问题1 (1)4-(-3)=______ ;
(2)4+(+3)=______.
教师引导学生发现:两式的结果相同,即4-(-3)= 4+(+3).
思考:减法可以转化成加法运算.但是,这是否具有一般性?
问题2 (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.
对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?
(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).
归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.
强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.
三、运用举例 变式练习
例1 计算:(1)9 -(-5); (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)
例2 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?
例3 P63例3
例4 15℃比5℃高多少? 15℃比-5℃高多少?
练一练: P63. 1题 P64-65数学理解1、问题解决1、联系拓广1、2题.
补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;
(5)0-6; (6)6-0; (7)0-(-6); (8)(-6)-0.
2.计算:(1)16-47; (2)28-(-74); (3)(-37)-(-85); (4)(-54)-14;
(5)123-190; (6)(-112)-98; (7)(-131)-(-129); (8)341-249.
3.计算:(1)(3-10)-2; (2)3-(10-2); (3)(2-7)-(3-9);
4.当a=11,b=-5,c=-3时,求下列代数式的值:
(1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.
四、反思小结
1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。
习题2.6知识技能1、3、4题。
本节课内容较为简单,学生掌握良好,课上反应热烈。
有理数课件【篇5】
教学目标:
1、知识与技能:
了解科学记数法的意义,会用科学记数法表示绝对值比较大的数。
2、过程与方法:
在科学记数法中,其中a是整数位只有一位的数,n是原数的整数位数减1。
重点、难点:
1、重点:用科学记数法表示绝对值较大的数。
2、难点:熟练用科学记数法表示绝对值较大的数。
教学过程:
一、创设情景,导入新课
太阳的半径大约是696000千米;光的速度大约是300000000米/秒。这些数读、写都有困难,可把696000记作6.96×105,这就是科学记数法。
二、合作交流,解读探究
1、填空
= , = , =
2.8×= ,2.8×= ,2.8×=
2、学生探究:从前面的填空可知:
100=, 1000=, 10000=280=2.8×,2800=2.8×,28000=2.8×
从上面你能发现什么规律吗?
(1)10的指数比原数的整数位少1,一个数可以写成一个整数位数只有一位的数与10的n次幂相乘的形式。
三、应用迁移,巩固提高
1、做一做:课本P44例2
解答见教材,注意10的指数比原数的整数位少1
2、科学记数法:把一个绝对值大于10的数记成的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。
3、做一做:用科学记数法表示下列各数:
(1) 108000;(2)-3200000
两生上台练习,指出学生存在的错误,如对科学记数法中a的要求理解的错误。
4、P44练习第1、2、3题
四、总结反思
用科学记数法表示时要注意:(1)a是整数位只有一位的数,(2)10的指数n比原数的整数位数少1。
五、作业:P45习题1.6A组第3、4、5题
有理数课件【篇6】
2.5 有理数的减法
题 目
有理数的减法
课时1
学校教者
年级七年
学科数学
设计来源
自我设计
教学时间
教学目标
1.理解有理数减法法则, 能熟练进行减法运算.
2.会将减法转化为加法,进行加减混合运算,体会化归思想.
重点
有理数的减法法则的理解,将有理数减法运算转化为加法运算.
难点
有理数的减法法则的理解,将有理数减法运算转化为加法运算.
教学方法
讲授教学过程
一、情境引入:
1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)
2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?
探索新知:
(一) 有理数的减法法则的探索
1.我们不妨看一个简单的问题: (-8)-(-3)=?
也就是求一个数“?”,使 (?)+(-3)=-8
根据有理数加法运算,有 (-5)+(-3)= -8
所以 (-8)-(-3)= -5 ①
2.这样做减法太繁了,让我们再想一想有其他方法吗?
试一试
做一个填空:(-8)+( )= -5
容易得到 (-8)+(+3 )= -5 ②
思考: 比较 ①、②两式,我们有什么发现吗?
3.验证:
(1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少?
3-(-5)=3+ ;
(2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少?
(-3)-(-5)=(-3)+ ;
(2)如果某天A地气温是-3℃,B地气温是5℃,A地比B地气温高多少?
(-3)-5=(-3)+ ;
(二)有理数的减法法则归纳
1.说一说:两个有理数减法有多少种不同的情形?
2.议一议:在各种情形下,如何进行有理数的减法计算?
3.试一试:你能归纳出有理数的减法法则吗?
由此可推出如下有理数减法法则:
减去一个数,等于加上这个数的相反数。
字母表示:
由此可见,有理数的减法运算可以转化为加法运算。
【思考】:两个有理数相减,差一定比被减数小吗?
说明:(1)被减数可以小于减数。如: 1-5 ;
(2)差可以大于被减数,如:(+3)–(-2) ;
(3)有理数相减,差仍为有理数;
(4)大数减去小数,差为正数;小数减大数,差为负数;
(三 )问题:
问题1. 计算:
①15-(-7) ②(-8.5)-(-1.5) ③ 0-(-22)
④(+2)-(+8) ⑤(-4)-16 ⑥
问题2.(1)-13.75比少多少??
(2)从-1中减去-与-的和,差是多少?
(四)课堂反馈:
1.求出数轴上两点之间的距离:
(1)表示数10的点与表示数4的点;
(2)表示数2的点与表示数-4的点;
(3)表示数-1的点与表示数-6的点。
归纳总结:
1.有理数减法法则2.有理数减法运算实质是一个转化过程
达标测评
【知识巩固】
1.下列说法中正确的是( )
A减去一个数,等于加上这个数. B零减去一个数,仍得这个数.
C两个相反数相减是零. D在有理数减法中,被减数不一定比减数或差大.
2.下列说法中正确的是( )
A两数之差一定小于被减数.
B减去一个负数,差一定大于被减数.
C减去一个正数,差不一定小于被减数.
D零减去任何数,差都是负数.
3.若两个数的差不为0的是正数,则一定是( )
A被减数与减数均为正数,且被减数大于减数.
B被减数与减数均为负数,且减数的绝对值大.
C被减数为正数,减数为负数.
4.下列计算中正确的是( )
A(—3)-(—3)= —6 B 0-(—5)=5
C(—10)-(+7)= —3 D | 6-4 |= —(6-4)
5.(1)(—2)+________=5; (—5)-________=2.
(2)0-4-(—5)-(—6)=___________.
(3)月球表面的温度中午是1010C,半夜是-153oC,则中午的温度比半夜高____.
(4)已知一个数加—3.6和为—0.36,则这个数为_____________.
(5)已知b ,则a,a-b,a+b从大到小排列________________.
(6)0减去a的相反数的差为_______________.
(7)已知| a |=3,| b |=4,且a,则a-b的值为_________.
6.计算
(1) (—2)-(—5) (2)(—9.8)-(+6)
(3)4.8-(—2.7) (4)(—0.5)-(+)
(5)(—6)-(—6) (6)(3-9)-(21-3)
(7)| —1-(—2)| -(—1)
(8)(—3)-(—1)-(—1.75)-(—2)
7.已知a=8,b=-5,c=-3,求下列各式的值:
(1)a-b-c;(2)a-(c+b)
8.若a0, 则a, a+b, a-b, b中最大的是( )
A. a B. a+b C. a-b D. b
9.请你编写符合算式(-20)-8的实际生活问题。
教与学反思
你有什么收获?
教学反思:
1、本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生教学的引导者、伙伴的新型师生关系.
2、在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的。
有理数课件【篇7】
一、教材分析
本节所讲的是北师大版《数学》实验教科书七年级上册第二章第五节的内容。
本章内容是有理数及其运算,在一定意义上讲,它是全新的,但必须充分认识到它是小学所学的四则运算的继承和发展,就本节内容来看,有理数的减法运算是建立在刚刚学过的有理数加法运算基础上的,这一节课是前面所学知识的继续,又是后面学习有理数混合运算的基础,起着承前启后的作用。有理数的减法对学生来说是比较难学的,特别容易和前面的加法混淆。初学时,学生的正确率不高,所以要通过对法则的透彻理解和大量的练习才能达到熟练的地步。
这节课首先从某一天的温差出发,引入有理数减法,使学生体会减法在实际生活中的应用,通过减法是加法的逆运算得出答案。在此基础上,归纳出有理数的减法法则,然后根据法则进行计算,最后又以两个实际问题进行运用,使数学计算变得生活化,数学课变得活泼一些,没有这么枯燥无味。
根据上述教材结构以及本人对教材的理解和分析,确定本节课的教学目标如下:
1、经历探索有理数减法法则的过程,理解有理数减法法则。
2、能熟练地进行有理数减法的运算。
3、为学生创设熟悉的生活环境,使其在轻松愉快中体会数学知识在实际生活中的应用。
教学重点:有理数减法法则的理解及熟练运用法则计算。
难点:探索有理数减法法则,正确完成减法与加法的转化
二、学情分析
七年级学生性格开朗活泼,对新鲜事物比较感兴趣,因此,教学过程中创设的问题情境应当生动活泼,直观形象,贴近学生的生活。由于刚升入初中,学生的智力,基础,学习习惯都有较大的差异,很多同学会出现符号处理有误,法则选择不灵活等问题。因此,老师要充分发挥情感目标的调控作用,随时收集来自学生方面的信息,及时反馈矫正加强交流与合作。
三、教法分析
本节课的教学遵循了启发性的教学原则,注意渗透了转化的数学思想。按照“教师为主导,学生为主体”的教学观,倡导学生主动参与,让学生在应用旧知识的过程中探究,通过老师的引导启发得到新的结论。通过比较分析,应用获得新知识,从而达到理解并掌握的目的。
四、教学程序设计
1、创设情境,引入课题
某一天,某地的最高气温是40C,最低气温是—30C,你能从温度计上看出40C比—30C高多少度吗?(用多媒体投影仪投影出温度计的图片)
设计意图:从学生的生活经验和已有的知识背景出发让他们从生活中去发现数学。
昨日气温是—10C,再降30C是多少度?
学生根据小学掌握的知识都能理解,是用减法运算。让学生列出算式,同时板书课题:有理数的减法。
4—(—3)= —1—3=
2、提出问题,大胆猜想,观察探索,得出结论。
4—(—3)=?引导学生回想小学学过的加法和减法互为逆运算。被减数=差+减数,即?+(—3)=4
学生通过观察很容易得出:7+(—3)=4,所以:4—(—3)=7
在学生学生得出4—(—3)=7后,老师引导学生填空:4+ 3 =7。对这两个算式加以比较,找到不同的地方在哪里。然后再引导学生得出:—1—3=?采用类比的方法,得出答案。
刚才两个算式:4—(—3)=4+3=7,—1—3=—1+(—3)=—4,从左到右哪些发生了变化?有没有不变的数?能得到哪些结论?请用一句话把这个结论概括出来。
学生分组讨论、交流后,由小组长代表发言,看哪一组的同学概括得最精炼。(设计意图:采用小组竞赛的形式,调动学生的学习积极性)。
最后由教师和同学一起总结归纳有理数减法法则:减去一个数,等于加上这个数的相反数。
3、验证结论
完成课本62页的填空题
(设计意图:从提出猜想到得出正确结论之间有一个探索验证的过程。只有通过大量的不同类型的题目的验证,才有说服力,才能使这个法则得到运用。
4、运用法则
例1:计算下列各题
(1)9—(—5)(2)(—3)—1(3)0—8(4)(—5)—0
要求学生按照法则规范写出解题过程,可请些成绩不太好的学生上来演板,不要怕学生出现错误,对没有做对的同学要找到出错的原因,予以纠正。特别是(2)(3)小题,估计有不少学生写成:(—3)—1=—3+1,0—8=0+8,错误认为题目中的减号,又是负号,导致“一号两用”,运算符号和性质符号不分。
例2,例3(投影仪投影)是实际应用题
(设计意图)让学生充分认识到数学来源于生活,又服务于生活,享受在经历苦苦探索之后而轻松解题带来的快乐心情。
巩固练习:课本63页,随堂练习第1题。
(设计意图)在学生各自独立完成的基础上,以小组为单位进行检查,由做得既快又准的同学负责指导本组内学习有困难的同学,这样,可以激发学生的兴趣,培养合作精神。
补充练习:1、—7比—2大多少?
2、选择:下列说法正确的是
A.减去一个数等于加上这个数B.减去一个数仍得这个数
C.a—b=a+(—b)D.两个数的差一定比被减数小
(设计意图)此题考察学生的综合能力,对概念的理解程度选择题最容易出错。概念要理解得非常透彻才能答对。
5、拓展,延伸
试一试,相信你一定会做!
钟面上有1、2、3、……、12,共十二个数字,试在某些数的前面添加负号,使它们的和为零。
(设计意图)对学有余力的学生来说,是一次小小的挑战,但数学的乐趣在于不断探究,永不止步,永攀高峰!
6、 总结:
通过这节课的学习,你学到了什么?有什么困惑?
注意:运用有理数法则时的“两变”,“一不变”。
两变:减号变加号,减数变成它的相反数。
一不变:被减数保持不变。
有理数的减法转化为加法,体现了数学中的“转化”思想。
(设计意图)鼓励学生大胆提出自己的困惑和质疑,既培养了学生的信心,又提高了表达能力。
7、布置作业:63页至64页,1、2、4
利用课堂作业及时反馈学生的掌握情况
有理数课件【篇8】
今天我要说课的课题是有理数的加减法,属课前说课。首先,我对本节教材进行一些分析。本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。这一节课是本册书第一章第三节的内容。我打算分四课时完成,去括号、加法计算、减法计算、加减法混合计算。下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本小节的理解与设计。
一、教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:
(1)渗透由特殊到一般的辩证唯物主义思想
(2)培养学生严谨的思维品质。
二、教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2.通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
三、教学建议
(一)重点、难点分析
本小节的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略符号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7应变成12+7-5,而不能变成12-7+5。
备注:教学过程我主要说第一小节---去括号
(三)教学过程:
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点。
本节课的教学设计环节:
教学环节
教学活动设计
设计说明
前提诊测,复习提问
1、如何表示一个数的相反数?-(+3),+(-2)各表示的意义是什么?从而引导学生理解“-”号表示一个数的相反数,“+”表示一个数的本身;2、绝对值检测:随机出五六道小题即可
复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”.
提出问题,创设情景
把以下数相加、相减
1、+4,-5,+3,-6,-7,3,-2.5
2、-3.2,-2.6,+5,+6,-4
在黑板上写五六个正负数请同学们把他们加在一起再减在一起。不要怕学生写错,让学生自己体会书写的繁琐计算的困难,继而想出解决办法。(可以多给学生时间。)
尝试指导,实施目标
从学生的错误出发,引导学生先填括号,在想法去括号,通过小组探究得出去括号法则。,掌握计算方法。(5-10分钟即可)
题型训练,巩固目标
1、两数加减:+3+(-4);(-5)+(-6);(-8)-(+4);(+5)-(-6)
2、多数加减:(-12)-(+23)+(-7)-(-2);-(-4)+(+5)-(-6);
+(+6)-(-5)+(-9);0-(-3)+(+6)-(+0.1)+(-0.25);
-(-7)+(-2.3)-(-5.1)+(-3)
此处要反复练习,并使学生明白去括号后的是省略加号的和式。
鼓励学生积极发言,增进师生、生生之间的交流、互动.
形成性测试,检测目标
1、做书18、20、23、24页练习题(只去括号)
2、利用书上习题1.3复习巩固1、2题的双数题进检测
把“反馈---调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。
归纳总结,纳入知识系统
+(),去掉括号后所得结果仍是括号内的数;-(),去掉括号后所得结果是括号内数的相反数。
由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题
布置作业
1、课后作业:书24页习题1.31.(1)、(3)、(5)、(7);2.(1)、(3)
要求:小组长及时检查力争人人掌握去括号方法,会省略括号。
利用课堂检测及时反馈本课重、难点。
利用课后作业巩固新知。
谢谢大家!我的说课完毕。
有理数课件【篇9】
一、知识与能力
掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力
二、过程与方法
经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算
三、情感、态度、价值观
培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性
四、教学重难点
一、重点:熟练进行有理数的乘除运算
二、难点:正确进行有理数的乘除运算
预习导学
通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律
五、教学过程
一、创设情景,谈话导入
我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律
二、精讲点拨质疑问难
根据预习内容,同学们回答以下问题:
1.有理数的乘法法则:
(1)同号两数相乘___________________________________
(2)异号两数相乘_____________________________________
(3)0与任何自然数相乘,得____
2.有理数的乘法运算律:
(1)乘法交换律:ab=_________
(2)乘法结合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3.有理数的除法法则:
除以一个不等于0的数,等于乘这个数的__________
比较有理数的乘法,除法法则,发现_________可能转化为__________
三、课堂活动强化训练
某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?
注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结
有理数课件【篇10】
一、教材分析
教材的地位和作用
本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础.
二、目标界定
常言说,好方法不如正确的方向,数学课堂上的目标就是一节课的灵魂和方向标,为此结合有理数在数学数体系中的位置以及学生已有知识和认知规律,我制定了以下三维目标
知识:有理数的概念及分类。
方法:数学分类方法。
情感:培养学生选定标准、严密分类的数学素养。
三、 教学重点、难点及突破策略:
教学重点:有理数的概念。
教学难点:正确理解分类的标准和按一定的标准进行分类;合作交流、查找资料进行难点突破。
四、说教学流程
鉴于初一年级学生的年龄特点,及已有知识和认知的规律。他们对概念的理解能力,分析剖析、问题的能力都不强,精神不能长时间集中,但思维比较活跃、好奇心比较强。我决定采取启发式教学法及激趣、设疑情感性教学,创设问题情境,引导学生主动思考,用大量的实例和生动、严密的数学语言激发学生学习兴趣,调节学习情绪。
本节课通过创设问题情境导入课题;阅读质疑,自主探究;多元互动,合作探究;训练检测,目标探究;迁移运用,拓展探究五个环节完成本课时的学习。
导入:(1分钟)有人说,中国汉字最具创造力,一个字可以写成一幅画,那么我抓住有理数一词的字面意思,巧设课引:同学们,看课题:教师直接板书课题《有理数》,什么是有理数呢?难道咱们今天要给数的家族评理来了吗?看哪些是有理的数?要想弄个明白,请把心思投入这节课的学习。
行家一再提倡:教师不是要教给学生知识,而是教给他们学知识和使用知识的方法。所以,我以自主阅读、质疑、独立思考、合作探究贯穿学生获取知识的全过程。
阅读质疑,自主探究(10分钟)
1、自主阅读课本第6页,(1)找到有理数的概念。(2)明确有理数(按整数和分数)的分类。2.记录你对问题的理解及疑惑。
2、阅读提示:深入剖析,围绕下列问题阅读与思考:
通过最近的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?_______,_________,______。(比如正负数、零或整数分数,突出其不同类。为下面的按不同标准分类埋伏笔。)
问题展示(1):观察三位同学所写的数做一下分类,该分为几类,又该怎样分呢?请认真思考后把自己的想法与别人交流。
分为类,分别是:
归纳:
统称为整数,统称为分数统称为有理数.
(2):我们是否可以把上面的数换另一种角度进行两类?如果可以,应怎样分呢?(正负数和零)
3、数集概念解释:深奥道理浅显化,为使学生易于接受数集这一概念,我要举生活中物以类聚人以群分的例子,使道理生活化,并能够借此对学生进行思想品德教育。把一些数放在一起,就组成了一些数的集合。如所有的整数放在一起就组成了整数集合。数集一般用圆圈或大括号表示。
多元互动合作探究(10分钟的时间)
整体把握知识点,再次阅读课本6--7页的相关内容,自主加合作重点梳理有理数分类的两种方法(整数和分数;正负数和零)和不同的数集。
如所有的正数组成正数集合,所有的负数组成负数集合;零和负数统称为_非正数集合,零和正数统称为非负数集合。
训练检测目标探究(10分钟)
有人说,知识就是力量,使用知识才可以使知识的能量进行释放。相信大家有能力使用今天所学的知识完成下面的题目。
1、下列说法中不正确的是……………………………………………()
A.-3.14既是负数,分数,也是有理数
B.0既不是正数,也不是负数,但是整数
C.-xxxx既是负数,也是整数,但不是有理数
D.O是正数和负数的分界
2、下列说法正确的是()
A、整数就是正整数和负整数B、分数包括正分数、负分数
C、正有理数和负有理数组成全体有理数D、一个数不是正数就是负数。
3、下列一定是有理数的是()
A、πB、aC、a+2D、
3、、判断题:(打“√”或“×”)
(1)、自然数是整数。﹝﹞
(2)、有理数只包括正数和负数。﹝﹞
(3)、我们知道了有理数有两种分类方法。﹝﹞
(4)、零是最小的自然数。﹝﹞
(5)、正整数包括零和自然数。﹝﹞
(6)任何分数和小数都是有理数。﹝﹞
4、完成课本第6--7页练习第1、2题。尤其提醒学生:小数也要分在分数集合内;集合圈内的省略号表示本集合中的数是无限的,而本题中只填了所给的几个数,所以用省略号。
5、图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗?____________
正数集合整数集合
迁移应用拓展探究(9分钟)
学习链接
1.本节课学了哪些数学知识:
2.本节课学会的数学方法及数学思想:
3.本节知识的梳理过程中,应提醒大家注意什么问题?(如概念分类混淆)
二.学习链接2
.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能说出第10个数,第200个数,第201个数是什么吗?
①1,-1,1,-1,1,-1,1,-l,____,____,____,…;
②1,-2,3,-4,5,-6,7,-8,____,____,____,…;
提示学生:学习这类型题目应从符号和数字两方面考虑。
三、有理数含义揭晓:有理数原意为可写成两个整数的比的数,并不是字面意思理解为有一定道理的数。因为所有的整数都可看着分母是1;零可看着它与零以外的所有数的比;有限小数和无限循环小数都可以化成分数,所以它们都是有理数;而无限不循环小数不能写成两个整数比的形式,所以不是有理数,如π,它是将来要学习的无理数。
知识赏阅:数的由来与发展(2分钟)
人类在漫长的生活实践中,由于记事和分配物品等方面的需要,逐渐产生了数的概念。我国古代《易经》一书中有“结绳而治”的记载.现
在我们已经认识了自然数、负整数、分数和小数,这些都属于有理数.你了解这些数的由来与发展吗?请到图书馆或上因特网查找有关数的发展史的资料,写一篇数学小论文,介绍数的由来与发展.
撰写“数的发展与由来”的小论文,主要是让学生体会数学在人类文明发展与进步中的作用,这也是一个对学生能力的培养的机会.应该告诉学生到图书馆查阅资料及搜索网站的方法.如用google搜索,怎样打如关键词,能找到什么资料,怎样下载,对下载的资料怎样进行裁剪等等..
课堂小结:这节课咱们既获得了有理数概念、分类,了解了一些数集,又学会了一些数学思想和方法,并从中感受到了数学的逻辑性和严密性。相信大家在以后的数学学习中会越学越有趣,数学素养会越来越深。
板书设计:有理数
概念有理数
数集
分类有理数分类
数集种类
作业:
1、课本第4页第1题
2、基础训练第一课时
这篇初一上册数学说课稿:《有理数》说课稿就介绍到这里了,希望大家喜欢!
有理数课件【篇11】
教学目标
1、 经历探索有理数减法法则的过程。
2、理解并初步掌握有理数减法法则,会做有理数减法运算。
3、能根据具体问题 ,培养抽 象概括能力和口头表达能力。
教学重点
运用有理数减法法则做有理数减法运算。
教学难点
有理数减法法则的得出。
教具 学具
多媒体、教材 、计算器
教学方法
研讨法、讲练结合
教学过程
一、 引入新课:
师:下面列出的是连续四周的最高和最低气温:
第1周 第二周 第三周 第四周
最高气温 +6℃ 0℃ +4℃ -2℃
最低气温 +2℃ -5℃ -2℃ - 5℃
周温差
求每 周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。
生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。
列式为;
(+6)-(+2)=4
0 -(-5)=5
(+4)-(-2)=6
(-2)-(-5)=3
教学过程
二、 有理数减法法则的推倒:
师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。
2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?
3 、自己设计一些有理数的减法,用计算器检验一下你 归纳的减法法则是否正确。
举例: (-5)+( )=-2
得出 (-5)+(+3)=-2
所以得到(-2)-(-5)=+3
而 (-2)+(+5)=+3
有理数减法法则:减去一个数,等于加上这个数的相反数。
三、 法则的应用:
例1:先做笔算,再 用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
教学过程
解:(1 )原式= -34+(-56)+(+28)
=-90+(+28)
= -62
(2)原式=+25+(+293)+(-472)
=+25+(-836)
= 676
注意:强调计算过程不能跳步,体现有理数减法法则的运用。
检 测 题
五、 练习反馈:
书P411、2、 3
师:巡视个别指导,订正答案。
六、小结
有理数减法法则:
减去一个数,等于加上这个数的相反数。
作业书P50、515、6(作业本上)
板书
25有理数的减法(一)
有理数减法法则:
减去一个数,等于加上
这个数的相反数。 例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)