你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >经典初中教案圆心角弧弦弦心距之间的关系
  • 经典初中教案圆心角弧弦弦心距之间的关系

    发表时间:2022-02-08

    【www.jk251.com - 弦动我心观看心得】

    一名优秀的初中老师肯定有一份准备充分的教案,教案能够安排教学的方方面面,可以通过编写教案认识自己教学的优点和不足。初中教案要写哪些内容呢?小编为你推荐《经典初中教案圆心角弧弦弦心距之间的关系》,希望您喜欢。

    第一课时(一)

    教学目标:

    (1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;

    (2)培养学生实验、观察、发现新问题,探究和解决问题的能力;

    (3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.

    教学重点、难点:

    重点:圆心角、弧、弦、弦心距之间关系定理的推论.

    难点:从感性到理性的认识,发现、归纳能力的培养.

    教学活动设计

    教学内容设计

    (一)圆的对称性和旋转不变性

    学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.

    引出圆心角和弦心距的概念:

    圆心角定义:顶点在圆心的角叫圆心角.

    弦心距定义:从圆心到弦的距离叫做弦心距.

    (二)

    应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.

    定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.

    (三)剖析定理得出推论

    问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)

    举出反例:如图,∠AOB=∠COD,但ABCD,.(强化对定理的理解,培养学生的思维批判性.)

    问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.

    推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)

    (四)应用、巩固和反思

    例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.

    解(略,教材87页)

    例题拓展:当P点在圆上或圆内是否还有AB=CD呢?

    (让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)

    练习:(教材88页练习)

    1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:.

    (1)如果AB=CD,那么______,______,______;

    (2)如果OE=OG,那么______,______,______;

    (3)如果=,那么______,______,______;

    (4)如果∠AOB=∠COD,那么______,______,______.

    (目的:巩固基础知识)

    2、(教材88页练习3题,略.定理的简单应用)

    (五)小结:学生自己归纳,老师指导.

    知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.

    能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.

    (六)作业:教材P99中1(1)、2、3.

    第12页

    jk251.coM小编推荐

    圆心角弧弦弦心距之间的关系相关教学方案


    第一课时(一)

    教学目标:

    (1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;

    (2)培养学生实验、观察、发现新问题,探究和解决问题的能力;

    (3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.

    教学重点、难点:

    重点:圆心角、弧、弦、弦心距之间关系定理的推论.

    难点:从感性到理性的认识,发现、归纳能力的培养.

    教学活动设计

    教学内容设计

    (一)圆的对称性和旋转不变性

    学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.

    引出圆心角和弦心距的概念:

    圆心角定义:顶点在圆心的角叫圆心角.

    弦心距定义:从圆心到弦的距离叫做弦心距.

    (二)

    应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.

    定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.

    (三)剖析定理得出推论

    问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)

    举出反例:如图,∠AOB=∠COD,但ABCD,.(强化对定理的理解,培养学生的思维批判性.)

    问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.

    推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)

    (四)应用、巩固和反思

    例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.

    解(略,教材87页)

    例题拓展:当P点在圆上或圆内是否还有AB=CD呢?

    (让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)

    练习:(教材88页练习)

    1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:.

    (1)如果AB=CD,那么______,______,______;

    (2)如果OE=OG,那么______,______,______;

    (3)如果=,那么______,______,______;

    (4)如果∠AOB=∠COD,那么______,______,______.

    (目的:巩固基础知识)

    2、(教材88页练习3题,略.定理的简单应用)

    (五)小结:学生自己归纳,老师指导.

    知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.

    能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.

    (六)作业:教材P99中1(1)、2、3.

    第二课时(二)

    教学目标:

    (1)理解1°弧的概念,能熟练地应用本节知识进行有关计算;

    (2)进一步培养学生自学能力,应用能力和计算能力;

    (3)通过例题向学生渗透数形结合能力.

    教学重点、难点:

    重点:圆心角、弧、弦、弦心距之间的相等关系的应用.

    难点:理解1°弧的概念.

    教学活动设计:

    (一)阅读理解

    学生独立阅读P89中,1°的弧的概念,使学生从感性的认识到理性的认识.

    理解:

    (1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.

    (2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.

    (3)圆心角的度数和它们对的弧的度数相等.

    (二)概念巩固

    1、判断题:

    (1)等弧的度数相等();

    (2)圆心角相等所对应的弧相等();

    (3)两条弧的长度相等,则这两条弧所对应的圆心角相等()

    2、解得题:

    (1)度数是5°的圆心角所对的弧的度数是多少?为什么?

    (2)5°的圆心角对着多少度的弧?5°的弧对着多少度的圆心角?

    (3)n°的圆心角对着多少度的弧?n°的弧对着多少度的圆心角?

    (三)疑难解得

    对于①弧相等;②弧的长度相等;③弧的度数相等;④圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.

    特别是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.

    (四)应用、归纳、反思

    例1、如图,在⊙O中,弦AB所对的劣弧为圆的,圆的半径为2cm,求AB的长.

    学生自主分析,写出解题过程,交流指导.

    解:(参看教材P89)

    注意:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要特别关注和指导.

    反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.

    例2、如图,已知AB和CD是⊙O的两条直径,弦CE∥AB,=40°,求∠BOD的度数.

    题目从“分析——解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.

    (解答参考教材P90)

    题目拓展:

    1、已知:如上图,已知AB和CD是⊙O的两条直径,弦CE∥AB,求证:=.

    2、已知:如上图,已知AB和CD是⊙O的两条直径,弦=,求证:CE∥AB.

    目的:是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.

    (五)小节(略)

    (六)作业:教材P100中4、5题.

    探究活动

    我们已经研究过:已知点O是∠BPD的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,则AB=CD;现在,若⊙O与∠EPF的两边所在的直线分别交于点A、B和C、D,请你结合图形,添加一个适当的条件,使OP为∠BPD的平分线.

    解(略)

    ①AB=CD;

    ②=.(等等)

    数学教案-圆心角弧弦弦心距之间的关系初中教案精选


    第一课时圆心角、弧、弦、弦心距之间的关系(一)

    教学目标:

    (1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;

    (2)培养学生实验、观察、发现新问题,探究和解决问题的能力;

    (3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.

    教学重点、难点:

    重点:圆心角、弧、弦、弦心距之间关系定理的推论.

    难点:从感性到理性的认识,发现、归纳能力的培养.

    教学活动设计

    教学内容设计

    (一)圆的对称性和旋转不变性

    学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.

    引出圆心角和弦心距的概念:

    圆心角定义:顶点在圆心的角叫圆心角.

    弦心距定义:从圆心到弦的距离叫做弦心距.

    (二)圆心角、弧、弦、弦心距之间的关系

    应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.

    定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.

    (三)剖析定理得出推论

    问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)

    举出反例:如图,∠AOB=∠COD,但ABCD,.(强化对定理的理解,培养学生的思维批判性.)

    问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.

    推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)

    (四)应用、巩固和反思

    例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.

    解(略,教材87页)

    例题拓展:当P点在圆上或圆内是否还有AB=CD呢?

    (让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)

    练习:(教材88页练习)

    1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:.

    (1)如果AB=CD,那么______,______,______;

    (2)如果OE=OG,那么______,______,______;

    (3)如果=,那么______,______,______;

    (4)如果∠AOB=∠COD,那么______,______,______.

    (目的:巩固基础知识)

    2、(教材88页练习3题,略.定理的简单应用)

    (五)小结:学生自己归纳,老师指导.

    知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.

    能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.

    (六)作业:教材P99中1(1)、2、3.

    第二课时圆心角、弧、弦、弦心距之间的关系(二)

    教学目标:

    (1)理解1°弧的概念,能熟练地应用本节知识进行有关计算;

    (2)进一步培养学生自学能力,应用能力和计算能力;

    (3)通过例题向学生渗透数形结合能力.

    教学重点、难点:

    重点:圆心角、弧、弦、弦心距之间的相等关系的应用.

    难点:理解1°弧的概念.

    教学活动设计:

    (一)阅读理解

    学生独立阅读P89中,1°的弧的概念,使学生从感性的认识到理性的认识.

    理解:

    (1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.

    (2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.

    (3)圆心角的度数和它们对的弧的度数相等.

    (二)概念巩固

    1、判断题:

    (1)等弧的度数相等();

    (2)圆心角相等所对应的弧相等();

    (3)两条弧的长度相等,则这两条弧所对应的圆心角相等()

    2、解得题:

    (1)度数是5°的圆心角所对的弧的度数是多少?为什么?

    (2)5°的圆心角对着多少度的弧?5°的弧对着多少度的圆心角?

    (3)n°的圆心角对着多少度的弧?n°的弧对着多少度的圆心角?

    (三)疑难解得

    对于①弧相等;②弧的长度相等;③弧的度数相等;④圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.

    特别是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.

    (四)应用、归纳、反思

    例1、如图,在⊙O中,弦AB所对的劣弧为圆的,圆的半径为2cm,求AB的长.

    学生自主分析,写出解题过程,交流指导.

    解:(参看教材P89)

    注意:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要特别关注和指导.

    反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.

    例2、如图,已知AB和CD是⊙O的两条直径,弦CE∥AB,=40°,求∠BOD的度数.

    题目从“分析——解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.

    (解答参考教材P90)

    题目拓展:

    1、已知:如上图,已知AB和CD是⊙O的两条直径,弦CE∥AB,求证:=.

    2、已知:如上图,已知AB和CD是⊙O的两条直径,弦=,求证:CE∥AB.

    目的:是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.

    (五)小节(略)

    (六)作业:教材P100中4、5题.

    探究活动

    我们已经研究过:已知点O是∠BPD的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,则AB=CD;现在,若⊙O与∠EPF的两边所在的直线分别交于点A、B和C、D,请你结合图形,添加一个适当的条件,使OP为∠BPD的平分线.

    解(略)

    ①AB=CD;

    ②=.(等等)

    经典初中教案垂直于弦的直径


    第一课时(一)

    教学目标:

    (1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证明;

    (2)进一步培养学生观察问题、分析问题和解决问题的能力;

    (3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱.

    教学重点、难点:

    重点:①垂径定理及应用;②从感性到理性的学习能力.

    难点:垂径定理的证明.

    教学学习活动设计:

    (一)实验活动,提出问题:

    1、实验:让学生用自己的方法探究圆的对称性,教师引导学生努力发现:圆具有轴对称、中心对称、旋转不变性.

    2、提出问题:老师引导学生观察、分析、发现和提出问题.

    通过“演示实验——观察——感性——理性”引出垂径定理.

    (二)垂径定理及证明:

    已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.

    求证:AE=EB,=,=.

    证明:连结OA、OB,则OA=OB.又∵CD⊥AB,∴直线CD是等腰△OAB的对称轴,又是⊙O的对称轴.所以沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合,、分别和、重合.因此,AE=BE,=,=.从而得到圆的一条重要性质.

    垂径定理:平分这条弦,并且平分弦所对的两条弧.

    组织学生剖析垂径定理的条件和结论:

    CD为⊙O的直径,CD⊥ABAE=EB,=,=.

    为了运用的方便,不易出现错误,将原定理叙述为:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.加深对定理的理解,突出重点,分散难点,避免学生记混.

    (三)应用和训练

    例1、如图,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.

    分析:要求⊙O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OE⊥AB于E,而AE=EB=AB=4cm.此时解Rt△AOE即可.

    解:连结OA,作OE⊥AB于E.

    则AE=EB.

    ∵AB=8cm,∴AE=4cm.

    又∵OE=3cm,

    在Rt△AOE中,

    (cm).

    ∴⊙O的半径为5cm.

    说明:①学生独立完成,老师指导解题步骤;②应用垂径定理计算:涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h

    关系:r=h+d;r2=d2+(a/2)2

    例2、已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.求证AC=BD.(证明略)

    说明:此题为基础题目,对各个层次的学生都要求独立完成.

    练习1:教材P78中练习1,2两道题.由学生分析思路,学生之间展开评价、交流.

    指导学生归纳:①构造垂径定理的基本图形,垂径定理和勾股定理的结合是计算弦长、半径、弦心距等问题的常用方法;②在圆中解决弦的有关问题经常作的辅助线——弦心距.

    (四)小节与反思

    教师组织学生进行:

    知识:(1)圆的轴对称性;(2)垂径定理及应用.

    方法:(1)垂径定理和勾股定理有机结合计算弦长、半径、弦心距等问题的方法,构造直角三角形;(2)在因中解决与弦有关问题经常作的辅助线——弦心距;(3)为了更好理解垂径定理,一条直线只要满足①过圆心;②垂直于弦;则可得③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.

    (五)作业

    教材P84中11、12、13.

    第123页

    垂直于弦的直径初中教案精选


    第一课时(一)

    教学目标:

    (1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证明;

    (2)进一步培养学生观察问题、分析问题和解决问题的能力;

    (3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱.

    教学重点、难点:

    重点:①垂径定理及应用;②从感性到理性的学习能力.

    难点:垂径定理的证明.

    教学学习活动设计:

    (一)实验活动,提出问题:

    1、实验:让学生用自己的方法探究圆的对称性,教师引导学生努力发现:圆具有轴对称、中心对称、旋转不变性.

    2、提出问题:老师引导学生观察、分析、发现和提出问题.

    通过“演示实验——观察——感性——理性”引出垂径定理.

    (二)垂径定理及证明:

    已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.

    求证:AE=EB,=,=.

    证明:连结OA、OB,则OA=OB.又∵CD⊥AB,∴直线CD是等腰△OAB的对称轴,又是⊙O的对称轴.所以沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合,、分别和、重合.因此,AE=BE,=,=.从而得到圆的一条重要性质.

    垂径定理:平分这条弦,并且平分弦所对的两条弧.

    组织学生剖析垂径定理的条件和结论:

    CD为⊙O的直径,CD⊥ABAE=EB,=,=.

    为了运用的方便,不易出现错误,将原定理叙述为:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.加深对定理的理解,突出重点,分散难点,避免学生记混.

    (三)应用和训练

    例1、如图,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.

    分析:要求⊙O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OE⊥AB于E,而AE=EB=AB=4cm.此时解Rt△AOE即可.

    解:连结OA,作OE⊥AB于E.

    则AE=EB.

    ∵AB=8cm,∴AE=4cm.

    又∵OE=3cm,

    在Rt△AOE中,

    (cm).

    ∴⊙O的半径为5cm.

    说明:①学生独立完成,老师指导解题步骤;②应用垂径定理计算:涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h

    关系:r=h+d;r2=d2+(a/2)2

    例2、已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.求证AC=BD.(证明略)

    说明:此题为基础题目,对各个层次的学生都要求独立完成.

    练习1:教材P78中练习1,2两道题.由学生分析思路,学生之间展开评价、交流.

    指导学生归纳:①构造垂径定理的基本图形,垂径定理和勾股定理的结合是计算弦长、半径、弦心距等问题的常用方法;②在圆中解决弦的有关问题经常作的辅助线——弦心距.

    (四)小节与反思

    教师组织学生进行:

    知识:(1)圆的轴对称性;(2)垂径定理及应用.

    方法:(1)垂径定理和勾股定理有机结合计算弦长、半径、弦心距等问题的方法,构造直角三角形;(2)在因中解决与弦有关问题经常作的辅助线——弦心距;(3)为了更好理解垂径定理,一条直线只要满足①过圆心;②垂直于弦;则可得③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.

    (五)作业

    教材P84中11、12、13.

    第二课时(二)

    教学目标:

    (1)使学生掌握垂径定理的两个推论及其简单的应用;

    (2)通过对推论的探讨,逐步培养学生观察、比较、分析、发现问题,概括问题的能力.促进学生创造思维水平的发展和提高

    (3)渗透一般到特殊,特殊到一般的辩证关系.

    教学重点、难点:

    重点:①垂径定理的两个推论;②对推论的探究方法.

    难点:垂径定理的推论1.

    学习活动设计:

    (一)分解定理(对定理的剖析)

    1、复习提问:定理:平分这条弦,并且平分弦所对应的两条弧.

    2、剖析:

    (教师指导)

    (二)新组合,发现新问题:(A层学生自己组合,小组交流,B层学生老师引导)

    ,,……(包括原定理,一共有10种)

    (三)探究新问题,归纳新结论:

    (1)平分弦(不是直径)的直径垂直于弦,并且平分弦对应的两条弧.

    (2)弦的垂直平分线经过圆心,并且平分弦对应的两条弧.

    (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.

    (4)圆的两条平行线所夹的弧相等.

    (四)巩固练习:

    练习1、“平分弦的直径垂直于弦,并且平分弦所对的两条弧”这句话对吗?为什么?

    (在推论1(1)中,为什么要附加“不是直径”这一条件.)

    练习2、按图填空:在⊙O中,

    (1)若MN⊥AB,MN为直径,则________,________,________;

    (2)若AC=BC,MN为直径,AB不是直径,则则________,________,________;

    (3)若MN⊥AB,AC=BC,则________,________,________;

    (4)若=,MN为直径,则________,________,________.

    (此题目的:巩固定理和推论)

    (五)应用、反思

    例、四等分.

    (A层学生自主完成,对于其他层次的学生在老师指导下完成)

    教材P80中的第3题图,是典型的错误作.

    此题目的:是引导学生应用定理及推论来平分弧的方法,通过学生自主操作培养学生的动手能力;通过与教材P80中的第3题图的对比,加深学生对感性知识的认识及理性知识的理解.培养学生的思维能力.

    (六)小结:

    知识:垂径定理的两个推论.

    能力:①推论的研究方法;②平分弧的作图.

    (七)作业:教材P84中14题.

    第三课时垂径定理及推论在解题中的应用

    教学目的:

    ⑴要求学生掌握垂径定理及其推论,会解决有关的证明,计算问题.

    ⑵培养学生严谨的逻辑推理能力;提高学生方程思想、分类讨论思想的应用意识.

    ⑶通过例4(赵州桥)对学生进行爱国主义的教育;并向学生渗透数学来源于实践,又反过来服务于实践的辩证唯物主义思想

    教学重点:垂径定理及其推论在解题中的应用

    教学难点:如何进行辅助线的添加

    教学内容:

    (一)复习

    1.垂径定理及其推论1:对于一条直线和一个圆来说,具备下列五个条件中的任何个,那么也具有其他三个:⑴直线过圆心;⑵垂直于弦;⑶平分弦;⑷平分弦所对的优弧;⑸平分弦所对的劣弧.可简记为:“知2推3”

    推论2:圆的两条平行弦所夹的弧相等.

    2.应用垂径定理及其推论计算(这里不管什么层次的学生都要自主研究)

    涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h

    关系:r=h+d;r2=d2+(a/2)2

    3.常添加的辅助线:(学生归纳)

    ⑴作弦心距;⑵作半径.------构造直角三角形

    4.可用于证明:线段相等、弧相等、角相等、垂直关系;同时为圆中的计算、作图提供依据.

    (二)应用例题:(让学生分析,交流,解答,老师引导学生归纳)

    例1、1300多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4米,拱高(弧中点到弦的距离,也叫弓形的高)为7.2米,求桥拱的半径(精确到0.1米).

    说明:①对学生进行爱国主义的教育;②应用题的解题思路:实际问题——(转化,构造直角三角形)——数学问题.

    例2、已知:⊙O的半径为5,弦AB∥CD,AB=6,CD=8.求:AB与CD间的距离.(让学生画图)

    解:分两种情况:

    (1)当弦AB、CD在圆心O的两侧

    过点O作EF⊥AB于E,连结OA、OC,

    又∵AB∥CD,∴EF⊥CD.(作辅助线是难点,学生往往作OE⊥AB,OF⊥AB,就得EF=OE+OF,错误的结论)

    由EF过圆心O,EF⊥AB,AB=6,得AE=3,

    在Rt△OEA中,由勾股定理,得

    ,∴

    同理可得:OF=3

    ∴EF=OE+OF=4+3=7.

    (2)当弦AB、CD在圆心O的同侧

    同(1)的方法可得:OE=4,OF=3.

    ∴.

    说明:①此题主要是渗透分类思想,培养学生的严密性思维和解题方法:确定图形——分析图形——数形结合——解决问题;②培养学生作辅助线的方法和能力.

    例3、已知:如图,AB是⊙O的弦,半径OC∥AB,AB=24,OC=15.求:BC的长.

    解:(略,过O作OE⊥AE于E,过B作BF⊥OC于F,连结OB.BC=)

    说明:通过添加辅助线,构造直角三角形,并把已知与所求线段之间找到关系.

    (三)应用训练:

    P8l中1题.

    在直径为650mm的圆柱形油槽内装入一些油后.截面如图所示,若油面宽AB=600mm,求油的最大深度.

    学生分析,教师适当点拨.

    分析:要求油的最大深度,就是求有油弓形的高,弓形的高是半径与圆心O到弦的距离差,从而不难看出它与半径和弦的一半可以构造直角三角形,然后利用垂径定理和勾股定理来解决.

    (四)小结:

    1.垂径定理及其推论的应用注意指明条件.

    2.应用定理可以证明的问题;注重构造思想,方程思想、分类思想在解题中的应用.

    (五)作业:教材P84中15、16题,P85中B组2、3题.

    探究活动

    如图,直线MN与⊙O交于点A、B,CD是⊙O的直径,CE⊥MN于E,DF⊥MN于F,OH⊥MN于H.

    (1)线段AE、BF之间存在怎样的关系?线段CE、OH、DF之间满足怎样的数量关系?并说明理由.

    (2)当直线CD的两个端点在MN两侧时,上述关系是否仍能成立?如果不成立,它们之间又有什么关系?并说明理由.

    (答案提示:(1)AE=BF,CE+DF=2OH,(2)AE=BF仍然成立,CE+DF=2OH不能成立.CE、DF、OH之间应满足)

    【经典初中教案圆心角弧弦弦心距之间的关系】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...