你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >数学教案-三角形的内切圆教案模板
  • 数学教案-三角形的内切圆教案模板

    发表时间:2022-02-08

    【www.jk251.com - 三角形的内切圆】

    无论何时,教案都是我们准备教学的一种最好的方式,编写教案能够提高自己的教学研究能力,一份完整的教案有许多内容,初中教案要写哪些内容呢?可以看看本站收集的《数学教案-三角形的内切圆教案模板》,希望能够为您提供参考。

    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.

    难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.

    2、教学建议

    本节内容需要一个课时.

    (1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;

    (2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.

    教学目标:

    1、使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;

    2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;

    3、激发学生动手、动脑主动参与课堂教学活动.

    教学重点:

    三角形内切圆的作法和三角形的内心与性质.

    教学难点:

    三角形内切圆的作法和三角形的内心与性质.

    教学活动设计

    (一)提出问题

    1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?

    2、分析、研究问题:

    让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.

    3、解决问题:

    例1作圆,使它和已知三角形的各边都相切.

    引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.

    提出以下几个问题进行讨论:

    ①作圆的关键是什么?

    ②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?

    ③这样的点I应在什么位置?

    ④圆心I确定后半径如何找.

    A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.

    完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个.

    (二)类比联想,学习新知识.

    1、概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.

    2、类比:

    名称

    确定方法

    图形

    性质

    外心(三角形外接圆的圆心)

    三角形三边中垂线的交点

    (1)OA=OB=OC;

    (2)外心不一定在三角形的内部.

    内心(三角形内切圆的圆心)

    三角形三条角平分线的交点

    (1)到三边的距离相等;

    (2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;

    (3)内心在三角形内部.

    3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.

    4、概念理解:

    引导学生理解三角形的内切圆及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.

    (三)应用与反思

    例2如图,在△ABC中,∠ABC=50°,∠ACB=75°,点O是三角形的内心.

    求∠BOC的度数

    分析:要求∠BOC的度数,只要求出∠OBC和∠0CB的度数之和就可,即求∠l十∠3的度数.因为O是△ABC的内心,所以OB和OC分别为∠ABC和∠BCA的平分线,于是有∠1十∠3=(∠ABC十∠ACB),再由三角形的内角和定理易求出∠BOC的度数.

    解:(引导学生分析,写出解题过程)

    例3如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D

    求证:DE=DB

    分析:从条件想,E是内心,则E在∠A的平分线上,同时也在∠ABC的平分线上,考虑连结BE,得出∠3=∠4.

    从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法.

    证明:连结BE.

    E是△ABC的内心

    又∵∠1=∠2

    ∠1=∠2

    ∴∠1+∠3=∠4+∠5

    ∴∠BED=∠EBD

    ∴DE=DB

    练习分析作出已知的锐角三角形、直角三角形、钝角三角形的内切圆,并说明三角形的内心是否都在三角形内.

    (四)小结

    1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知三角形的内切圆?学习时互该注意哪些问题?

    2.学生回答的基础上,归纳总结:

    (1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念.

    (2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径.

    (3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用.

    (五)作业

    教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题.

    探究活动

    问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.

    (1)要把该四边形裁剪成一个面积最大的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);

    (2)计算出最大的圆形纸片的半径(要求精确值).

    提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:

    如图2,①以AC为轴对折;②对折∠ABC,折线交AC于O;③使折线过O,且EB与EA边重合.则点O为所求圆的圆心,OE为半径.

    (2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,∴r=.

    jK251.com其他人还在看

    经典初中教案三角形的内切圆


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.

    难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.

    2、教学建议

    本节内容需要一个课时.

    (1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;

    (2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.

    教学目标:

    1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;

    2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;

    3、激发学生动手、动脑主动参与课堂教学活动.

    教学重点:

    三角形内切圆的作法和三角形的内心与性质.

    教学难点:

    三角形内切圆的作法和三角形的内心与性质.

    教学活动设计

    (一)提出问题

    1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?

    2、分析、研究问题:

    让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.

    3、解决问题:

    例1作圆,使它和已知三角形的各边都相切.

    引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.

    提出以下几个问题进行讨论:

    ①作圆的关键是什么?

    ②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?

    ③这样的点I应在什么位置?

    ④圆心I确定后半径如何找.

    A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.

    完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个.

    (二)类比联想,学习新知识.

    1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.

    2、类比:

    名称

    确定方法

    图形

    性质

    外心(三角形外接圆的圆心)

    三角形三边中垂线的交点

    (1)OA=OB=OC;

    (2)外心不一定在三角形的内部.

    内心(三角形内切圆的圆心)

    三角形三条角平分线的交点

    (1)到三边的距离相等;

    (2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;

    (3)内心在三角形内部.

    3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.

    4、概念理解:

    引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.

    (三)应用与反思

    例2如图,在△ABC中,∠ABC=50°,∠ACB=75°,点O是三角形的内心.

    求∠BOC的度数

    分析:要求∠BOC的度数,只要求出∠OBC和∠0CB的度数之和就可,即求∠l十∠3的度数.因为O是△ABC的内心,所以OB和OC分别为∠ABC和∠BCA的平分线,于是有∠1十∠3=(∠ABC十∠ACB),再由三角形的内角和定理易求出∠BOC的度数.

    解:(引导学生分析,写出解题过程)

    例3如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D

    求证:DE=DB

    分析:从条件想,E是内心,则E在∠A的平分线上,同时也在∠ABC的平分线上,考虑连结BE,得出∠3=∠4.

    从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法.

    证明:连结BE.

    E是△ABC的内心

    又∵∠1=∠2

    ∠1=∠2

    ∴∠1+∠3=∠4+∠5

    ∴∠BED=∠EBD

    ∴DE=DB

    练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三角形内.

    (四)小结

    1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该注意哪些问题?

    2.学生回答的基础上,归纳总结:

    (1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念.

    (2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径.

    (3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用.

    (五)作业

    教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题.

    探究活动

    问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.

    (1)要把该四边形裁剪成一个面积最大的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);

    (2)计算出最大的圆形纸片的半径(要求精确值).

    提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:

    如图2,①以AC为轴对折;②对折∠ABC,折线交AC于O;③使折线过O,且EB与EA边重合.则点O为所求圆的圆心,OE为半径.

    (2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,∴r=.

    三角形的内切圆相关教学方案


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.

    难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.

    2、教学建议

    本节内容需要一个课时.

    (1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;

    (2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.

    教学目标:

    1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;

    2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;

    3、激发学生动手、动脑主动参与课堂教学活动.

    教学重点:

    三角形内切圆的作法和三角形的内心与性质.

    教学难点:

    三角形内切圆的作法和三角形的内心与性质.

    教学活动设计

    (一)提出问题

    1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?

    2、分析、研究问题:

    让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.

    3、解决问题:

    例1作圆,使它和已知三角形的各边都相切.

    引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.

    提出以下几个问题进行讨论:

    ①作圆的关键是什么?

    ②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?

    ③这样的点I应在什么位置?

    ④圆心I确定后半径如何找.

    A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.

    完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个.

    (二)类比联想,学习新知识.

    1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.

    2、类比:

    名称

    确定方法

    图形

    性质

    外心(三角形外接圆的圆心)

    三角形三边中垂线的交点

    (1)OA=OB=OC;

    (2)外心不一定在三角形的内部.

    内心(三角形内切圆的圆心)

    三角形三条角平分线的交点

    (1)到三边的距离相等;

    (2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;

    (3)内心在三角形内部.

    3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.

    4、概念理解:

    引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.

    第12页

    数学教案-全等三角形


    课题:全等三角形

    教学目标:

    1、知识目标:

    (1)知道什么是全等形、全等三角形及全等三角形的对应元素;

    (2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

    (3)能熟练找出两个全等三角形的对应角、对应边。

    2、能力目标:

    (1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

    (2)通过找出全等三角形的对应元素,培养学生的识图能力。

    3、情感目标:

    (1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

    (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

    教学重点:全等三角形的性质。

    教学难点:找全等三角形的对应边、对应角

    教学用具:直尺、微机

    教学方法:自学辅导式

    教学过程:

    1、全等形及全等三角形概念的引入

    (1)动画(几何画板)显示:

    问题:你能发现这两个三角形有什么美妙的关系吗?

    一般学生都能发现这两个三角形是完全重合的。

    (2)学生自己动手

    画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

    (3)获取概念

    让学生用自己的语言叙述:

    全等三角形、对应顶点、对应角以及有关数学符号。

    2、全等三角形性质的发现:

    (1)电脑动画显示:

    问题:对应边、对应角有何关系?

    由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

    3、找对应边、对应角以及全等三角形性质的应用

    (1)投影显示题目:

    D、AD∥BC,且AD=BC

    分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

    说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

    分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

    说明:根据位置元素来找:有相等元素,其即为对应元素:

    然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

    说明:利用“运动法”来找

    翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

    旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

    平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

    求证:AE∥CF

    分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

    ∴AE∥CF

    说明:解此题的关键是找准对应角,可以用平移法。

    分析:AB不是全等三角形的对应边,

    但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

    可利用已知的AD与BC求得。

    说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

    (2)题目的解决

    这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

    投影显示:

    (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

    (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

    (3)有公共边的,公共边一定是对应边;

    (4)有公共角的,角一定是对应角;

    (5)有对顶角的,对顶角一定是对应角;

    两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

    4、课堂独立练习,巩固提高

    此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

    5、小结:

    (1)如何找全等三角形的对应边、对应角(基本方法)

    (2)全等三角形的性质

    (3)性质的应用

    让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

    6、布置作业

    a.书面作业P55#2、3、4

    b.上交作业(中考题)

    思考题:

    板书设计:

    探究活动

    (2)证明:AF∥DE

    数学教案-三角形的中位线教案模板


    教学目标

    1.理解三角形中位线的概念,掌握它的性质及初步应用.

    2.通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.

    教学重点与难点

    重点是三角形中位线的性质定理.

    难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用.

    教学过程设计

    一、联想,提出问题.

    1.(投影)复习平行线等分线段定理及两个推论(图4-89).

    (1)请同学叙述定理及推论的内容.

    (2)用数学表态式叙述图4-89(c)中的结论.

    已知在ΔABC中,D为AB中点,DE∥BC,则AE=EC.

    2.逆向思维,探索新结论.

    引导学生思考:在图4-90中,反过来,若D,E分别为AB,AC中点,DE与BC有什么位置和数量关系呢?

    启发学生逆向类比猜想:DE∥BC(逆向联想),DE=BC(因为AD=AB,AE=AC,类比联想ΔADE的第三边DE与ΔABC的第三边也存在相同的倍数关系).

    由此引出课题.

    二、证明猜想,形成定理

    1.定义三角形的中位线,强调它与三角形的中线的区别.

    2.证明上述猜想成立,教师重点分析辅助线的作法的思考过程.

    教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法.教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法.

    3.板书一种证明过程.

    4.将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容.

    三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.

    5.分析定理成立的条件、结论及作用.

    条件:连结两边中点得到中位线.

    结论有两个,即位置关系和数量关系,根据题目需要选用.

    作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.

    三、应用举例、变式练习

    (投影)例1(直线给出图4-90的问题)根据图4-91中的条件,回答问题.

    (1)已知:如图4-91(a),D,E分别为AB和AC的中点DE=5.BC;

    (2)如图4-91(b),D,E,F分别为AB,AC,BC中点,AC=8,∠C=70°,求DF和∠EDF;

    (3)如图4-91(c),①它包含几个图4-90这样的基本图形?②哪些三角形全等?③有几个平行四边形?④若ΔDEF周长为10cm,求ΔABC的周长.⑤若ΔABC的面积等于20cm2,求ΔDEF的面积.⑥AF与DE有何关系?怎样用语言叙述这结论?

    分析:

    (1)可利用复合投影片实现三个图的叠加过程,以提高课堂效益并帮助学生建立分解基本图形的思想.

    (2)通过此题总结:三角形三和中位线围成的三角形的周长等于原三角形周长的一半,面积等于原三角形面积的14.这个过程可以无限进行下去,如图4-92.

    (3)从解题过程可以得到:三角形的一条中位线(DE)与第三边上的中线(AF)互相平分.

    (板书)例2(包含图4-90的问题)如图4-93,AD是ΔABC的高,M,N和E分别为AB,AC,BC的中点.求证:(1)四边形MNDE为等腰梯形;(2)∠MEN=∠MDN.

    分析:

    (1)由条件分析,图中可分解出“AD是ΔABC的高”,“三角形的中位线是MN,ME,NE”,“直角三角形斜边上中线MD,ND”.想一想,这些基本图形都有什么性质?

    (2)从结论出发,要证四边形MEDN是等腰梯形,只需证MN∥DE,且MN≠DE及以下三种情况之一成立:①ME=ND;②MD=EN;③∠EMN=∠DNM.从而证得结论成立.

    让学生口述,教师板书证明过程.

    例3构造图4-90问题.

    (1)求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形;

    (2)若已知四边形为特殊四边形呢?

    已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形.

    分析:

    (1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形.

    (2)让学生画图观察并思考此题的特殊情况,如图4-95,顺次连结各种特殊四边形中点得到什么图形?

    投影显示:

    四、师生共同小结

    1.教师提问引起学生思考:

    (1)这节课学习了哪些具体内容:

    (2)用什么思维方法提出猜想的?

    (3)应注意哪些概念之间的区别?

    2.在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基

    本图形(如图4-96).

    (1)注意三角形中线与中位线的区别,图4-96(a),(b).

    (2)三角线的中位线的判定方法有两种:定义及判定定理,图4-96(b),(。).

    (3)证明线段倍分关系的方法常有三种,图4-96(b),(d),().

    3.先猜想后证明的研究问题方法;逆向思维,探究逆命题是否成立,由此经常得到一些好

    的结论;添辅助线构造基本图形来使用性质的解题方法.

    4.三角形的中位线有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节

    课作思维上的准备)

    五、作业

    课本第180页第4题,第184页第5,7,8题,第185页B组第1题.

    补充题:(构造三角形的中位线)

    1.如图4-97,AD是上ABC的外角平分线,CD上AD于D.E是BC的中点.求证:(1)DE∥/AB:(2)DE=(AB+AC).

    (提示:延长CD交BA延长线于F.)

    2.如图4-98,正方形ABCD对角线交于点O,E是BO中点,连结”并延长交BC于F.求证:BF=CF.(提示:作OG∥EF交于BC于G.)

    3.如图4-99,在四边形ABCD中,AB=CD,E,F分别是AD,BC的中点,延长BA和CD分别交FE的延长线于G,H点.求证:∠BGF=∠CHF.(提示:连结AC,取AC中声、M,连结EM,FM.)

    课堂教学设计说明

    本教学过程设计需1课时完成.

    1.本节课的设计,力求让学生通过逆向思维及类比联想自己实践“分析——猜想——证

    明”的过程.变被动接受知识为主动应用已有知识,探索新知识,获得成功的喜悦.

    2.在应用性质定理时,通过一组层次递进的变式题的训练,由直接给出定理的基本图形

    到包含基本图形,学生分解图形后使用性质,再到通过添加辅助线构造基本图形来使用性质,

    学生逐步学会运用性质来解决问题,他们的解题能力、思考问题的方法得到逐步提高.

    数学教案-三角形全等的判定教案模板


    课题:全等三角形的判定(一)

    教学目标:

    1、知识目标:

    (1)熟记边角边公理的内容;

    (2)能应用边角边公理证明两个三角形全等.

    2、能力目标:

    (1)通过“边角边”公理的运用,提高学生的逻辑思维能力;

    (2)通过观察几何图形,培养学生的识图能力.

    3、情感目标:

    (1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

    (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

    教学重点:学会运用公理证明两个三角形全等.

    教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.

    教学用具:直尺、微机

    教学方法:自学辅导式

    教学过程:

    1、公理的发现

    (1)画图:(投影显示)

    教师点拨,学生边学边画图.

    (2)实验

    让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)

    这里一定要让学生动手操作.

    (3)公理

    启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

    作用:是证明两个三角形全等的依据之一.

    应用格式:

    强调:

    1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

    2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.

    3、平面几何中常要证明角相等和线段相等,其证明常用方法:

    证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.

    证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.

    2、公理的应用

    (1)讲解例1.学生分析完成,教师注重完成后的总结.

    分析:(设问程序)

    “SAS”的三个条件是什么?

    已知条件给出了几个?

    由图形可以得到几个条件?

    解:(略)

    (2)讲解例2

    投影例2:

    例2如图2,AE=CF,AD∥BC,AD=CB,

    求证:

    学生思考、分析,适当点拨,找学生代表口述证明思路

    让学生在练习本上定出证明,一名学生板书.教师强调

    证明格式:用大括号写出公理的三个条件,最后写出

    结论.(3)讲解例3(投影)

    证明:(略)

    学生分析思路,写出证明过程.

    (投影展示学生的作业,教师点评)

    (4)讲解例4(投影)

    证明:(略)

    学生口述过程.投影展示证明过程.

    教师强调证明线段相等的几种常见方法.

    (5)讲解例5(投影)

    证明:(略)

    学生思考、分析、讨论,教师巡视,适当参与讨论.

    师生共同讨论后,让学生口述证明思路.

    教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明.

    3、课堂小结:

    (1)判定三角形全等的方法:SAS

    (2)公理应用的书写格式

    (3)证明线段、角相等常见的方法有哪些?

    让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.

    6、布置作业

    a书面作业P56#6、7

    b上交作业P57B组1

    思考题:

    板书设计:

    探究活动

    【数学教案-三角形的内切圆教案模板】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...