你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >数学教案-解直角三形应用举例相关教学方案
  • 数学教案-解直角三形应用举例相关教学方案

    发表时间:2022-02-07

    【www.jk251.com - 小学数学教案直角钝角】

    按照惯例,初中教师必须撰写自己的教案,撰写教案有利于教研活动的开展,每一位初中老师都要慎重考虑教案的设计,优秀的初中教案是什么样子的?为了解决大家烦恼,小编特地收集整理了数学教案-解直角三形应用举例相关教学方案,供大家参考。

    1.知识结构:

    2.重点和难点分析

    重点和难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

    3.教法建议

    本节知识与实际联系密切,这些知识可以直接用来解决一些实际问题,这在几何的许多章节中是做不到的,所以要充分发挥这一特点,通过教学,培养学生应用数学的意识,解决实际问题的能力.要解决实际问题,首先要能够把实际问题抽象为数学问题,然后运用数学知识解决这些问题,为了使学生能够处理一些简单问题,教材中配备一些比较典型的例题,这些例题的教学,要注意以下几个问题:

    1.帮助学生弄清实际问题的意义.由于学生接触实际较少,实践经验不足,许多实际问题的意义不清楚,许多术语不熟悉,这些在教学中要向学生说明.例如测量中的仰角、俯角、视线、铅垂线等等,零件图,特别是剖面图的意义,航行中的方位角等.学生懂得了这些常识,才能理解实际问题.

    2.帮助学生画出草图.把实际问题抽象为几何问题,关键是画出草图,通过图形反映问题中的已知与未知,以及已知和未知量之间的关系.这里要解决好两个问题:

    (1)实际问题基本上是空间三维的问题,要会把它转化为平面问题,画出平面图形.例如飞机在空中俯看地面目标,选取经过飞机、地面目标的垂直于地平面的平面(图1);机器零件大都画出横断面、纵断面(图2);在地面上测两点距离,两个方向夹角,可以画平行地面的平面等.

    (2)船在海上航行,在平面上标出船的位置、灯塔或岸上某目标的位置,这类问题难点在于确定基准点.例如,说灯塔在船的什么方向上,这时船是基准点,如果说船在岸边某一点的什么方向上,这时岸边的这一点是基准点.有时因为船在航行中观测灯塔,基准点在转移,这些都会给画图增加困难.

    在第一册里,介绍过空间里的平行、垂直关系,也介绍过方向角的概念,这些都可以作为学习的基础,教学时可适当复习,帮助学生回忆.

    3.帮助学生根据需要作出辅助线.画出的草图,不一定有直角三角形,为了用解直角三角形的方法解决这些问题,常常需要添加辅助线.在这些问题中,辅助线常常是垂线或者平行线,例如图3中的几个问题中,虚线就是所要添加的辅助线.

    4.有了直角三角形,还要进一步分析,由题目的条件可以知道直角三角形的哪些边或角,题目要求的是哪些边或角,这样才可以用解直角三角形的方法解决这些实际问题.

    一、教学目标

    1.使学生了解仰角、俯角的概念,能根据直角三角形的知识解决实际问题,会把实际问题转化为数学问题来解决;

    2.通过本节的教学,进一步把形和数结合起来,提高学生分析问题、解决实际问题的能力;

    3.通过本节的教学,向学生渗透数学来源于实践又反过来作用于实践的观点,培养他们用数学的意识.

    二、重点难点疑点及解决办法

    1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

    2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

    3.疑点:练习中水位为+2.63这一条件学生可能不理解,教师最好用实际教具加以说明.

    4.解决办法:引导学生体会实际问题中的概念,建立数学模型,从而重难点,以教具演示解决疑点.

    三、教学过程

    1.仰角、俯角

    当我们进行测量时,在视线与水平线所成的角中,视线在

    水平线上方的角叫做仰角,在水平线下方的角叫做俯角.

    教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.

    2.例1

    如图,某飞机于空中A处探测到目标C,此时飞行高度米,从飞机上看地平面控制点B的俯角,求飞机A到控制点B距离(精确到1米).

    解决此问题的关键是在于把它转化为数学问题,利用解直角三角报知识来解决,在此之

    前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但

    不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重语学生画几

    何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角得出中的,进而利用解直角三角形的知识就可以解此题了.

    解:在中,

    ∴(米).

    答:飞机A到控制点B的距离约为4221米.

    [例1]小结:本章引言中的例子和例1正好属于应用同一关系式

    来解决的两个实际问题即已知和斜边,求的对边;以及已知和对边,求斜边.

    3.巩固练习P.25.

    如图,某海岛上的观察所A发现海上某船只B并测得其俯角.已知观察所A的标高(当水位为0m时的高度)为43.74m,当时水位为+2.63m,求观察所A到船只B的水平距离BC(精确到1m)

    为了巩固例1,加深学生对仰角、俯角的了解,配备了练习.

    由于学生只接触了一道实际应用题,对其还不熟悉,不会将其转化

    为数学问题,因此教师在学生充分地思考后,应引导学生分析:

    1.谁能将实物图形抽象为几何图形?请一名同学上黑板画出来.

    2.请学生结合图说出已知条件和所求各是什么?

    答:已知,求AB.

    这样,学生运用已有的解直角三角形的知识完全可以解答.

    对于程度较高的学生,教师还可以将此题变式,当船继续行驶到D时,测得俯角,当时水位为-1.15m,求观察所A到船只B的水平距离(精确到1m),请学生独立完成.

    【例2】如图所示,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.

    此题在例1的基础上,又加深了一步,须由A作一条平等于CD的直线交BD于E,构造出,然后进一步求出AE、BE,进而求出BD与CD.

    设置此题,既使成绩较好的学生有足够的训练,同时对较差学生又是巩固,达到分层次教学的目的.

    解:过A作,于是,

    在中,

    ∴(米).

    .

    ∴(米).

    ∴(米).

    (米).

    答:BD的高及水平距离CD分别是32.03米,157.1米.

    练习:为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角,已知人的高度为1.72米,求树高(精确到0.01米).

    要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它.

    探究活动

    一、望海岛

    如图,要测量海岛高度,立两根高度都是3丈的杆,两杆相距1000步,使前杆、后杆、海岛排成一直线。从前杆往回走123步,脚、前杆顶、岛顶共线。从后杆往回走127步,脚、后杆、岛顶共线。问岛高和岛离前杆分别为多少?(在古代,1里=300步,1步=6尺=0.6丈)

    答案:4里55步;102里150步.

    二、望松

    如下图,求出三顶松的高度.

    答案:12丈2尺8寸.

    Jk251.com相关文章推荐

    解直角三形应用举例的教学方案


    1.知识结构:

    2.重点和难点分析

    重点和难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

    3.教法建议

    本节知识与实际联系密切,这些知识可以直接用来解决一些实际问题,这在几何的许多章节中是做不到的,所以要充分发挥这一特点,通过教学,培养学生应用数学的意识,解决实际问题的能力.要解决实际问题,首先要能够把实际问题抽象为数学问题,然后运用数学知识解决这些问题,为了使学生能够处理一些简单问题,教材中配备一些比较典型的例题,这些例题的教学,要注意以下几个问题:

    1.帮助学生弄清实际问题的意义.由于学生接触实际较少,实践经验不足,许多实际问题的意义不清楚,许多术语不熟悉,这些在教学中要向学生说明.例如测量中的仰角、俯角、视线、铅垂线等等,零件图,特别是剖面图的意义,航行中的方位角等.学生懂得了这些常识,才能理解实际问题.

    2.帮助学生画出草图.把实际问题抽象为几何问题,关键是画出草图,通过图形反映问题中的已知与未知,以及已知和未知量之间的关系.这里要解决好两个问题:

    (1)实际问题基本上是空间三维的问题,要会把它转化为平面问题,画出平面图形.例如飞机在空中俯看地面目标,选取经过飞机、地面目标的垂直于地平面的平面(图1);机器零件大都画出横断面、纵断面(图2);在地面上测两点距离,两个方向夹角,可以画平行地面的平面等.

    (2)船在海上航行,在平面上标出船的位置、灯塔或岸上某目标的位置,这类问题难点在于确定基准点.例如,说灯塔在船的什么方向上,这时船是基准点,如果说船在岸边某一点的什么方向上,这时岸边的这一点是基准点.有时因为船在航行中观测灯塔,基准点在转移,这些都会给画图增加困难.

    在第一册里,介绍过空间里的平行、垂直关系,也介绍过方向角的概念,这些都可以作为学习的基础,教学时可适当复习,帮助学生回忆.

    3.帮助学生根据需要作出辅助线.画出的草图,不一定有直角三角形,为了用解直角三角形的方法解决这些问题,常常需要添加辅助线.在这些问题中,辅助线常常是垂线或者平行线,例如图3中的几个问题中,虚线就是所要添加的辅助线.

    4.有了直角三角形,还要进一步分析,由题目的条件可以知道直角三角形的哪些边或角,题目要求的是哪些边或角,这样才可以用解直角三角形的方法解决这些实际问题.

    一、教学目标

    1.使学生了解仰角、俯角的概念,能根据直角三角形的知识解决实际问题,会把实际问题转化为数学问题来解决;

    2.通过本节的教学,进一步把形和数结合起来,提高学生分析问题、解决实际问题的能力;

    3.通过本节的教学,向学生渗透数学来源于实践又反过来作用于实践的观点,培养他们用数学的意识.

    二、重点·难点·疑点及解决办法

    1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

    2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

    3.疑点:练习中水位为+2.63这一条件学生可能不理解,教师最好用实际教具加以说明.

    4.解决办法:引导学生体会实际问题中的概念,建立数学模型,从而重难点,以教具演示解决疑点.

    三、教学过程

    1.仰角、俯角

    当我们进行测量时,在视线与水平线所成的角中,视线在

    水平线上方的角叫做仰角,在水平线下方的角叫做俯角.

    教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.

    2.例1

    如图,某飞机于空中A处探测到目标C,此时飞行高度米,从飞机上看地平面控制点B的俯角,求飞机A到控制点B距离(精确到1米).

    解决此问题的关键是在于把它转化为数学问题,利用解直角三角报知识来解决,在此之

    前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但

    不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重语学生画几

    何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角得出中的,进而利用解直角三角形的知识就可以解此题了.

    解:在中,

    ∴(米).

    答:飞机A到控制点B的距离约为4221米.

    [例1]小结:本章引言中的例子和例1正好属于应用同一关系式

    来解决的两个实际问题即已知和斜边,求的对边;以及已知和对边,求斜边.

    3.巩固练习P.25.

    如图,某海岛上的观察所A发现海上某船只B并测得其俯角.已知观察所A的标高(当水位为0m时的高度)为43.74m,当时水位为+2.63m,求观察所A到船只B的水平距离BC(精确到1m)

    为了巩固例1,加深学生对仰角、俯角的了解,配备了练习.

    由于学生只接触了一道实际应用题,对其还不熟悉,不会将其转化

    为数学问题,因此教师在学生充分地思考后,应引导学生分析:

    1.谁能将实物图形抽象为几何图形?请一名同学上黑板画出来.

    2.请学生结合图说出已知条件和所求各是什么?

    答:已知,求AB.

    这样,学生运用已有的解直角三角形的知识完全可以解答.

    对于程度较高的学生,教师还可以将此题变式,当船继续行驶到D时,测得俯角,当时水位为-1.15m,求观察所A到船只B的水平距离(精确到1m),请学生独立完成.

    【例2】如图所示,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.

    此题在例1的基础上,又加深了一步,须由A作一条平等于CD的直线交BD于E,构造出,然后进一步求出AE、BE,进而求出BD与CD.

    设置此题,既使成绩较好的学生有足够的训练,同时对较差学生又是巩固,达到分层次教学的目的.

    解:过A作,于是,

    在中,

    ∴(米).

    .

    ∴(米).

    ∴(米).

    (米).

    答:BD的高及水平距离CD分别是32.03米,157.1米.

    练习:为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角,已知人的高度为1.72米,求树高(精确到0.01米).

    要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它.

    探究活动

    一、望海岛

    如图,要测量海岛高度,立两根高度都是3丈的杆,两杆相距1000步,使前杆、后杆、海岛排成一直线。从前杆往回走123步,脚、前杆顶、岛顶共线。从后杆往回走127步,脚、后杆、岛顶共线。问岛高和岛离前杆分别为多少?(在古代,1里=300步,1步=6尺=0.6丈)

    答案:4里55步;102里150步.

    二、望松

    如下图,求出三顶松的高度.

    答案:12丈2尺8寸.

    经典初中教案解直角三形应用举例


    1.知识结构:

    2.重点和难点分析

    重点和难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

    3.教法建议

    本节知识与实际联系密切,这些知识可以直接用来解决一些实际问题,这在几何的许多章节中是做不到的,所以要充分发挥这一特点,通过教学,培养学生应用数学的意识,解决实际问题的能力.要解决实际问题,首先要能够把实际问题抽象为数学问题,然后运用数学知识解决这些问题,为了使学生能够处理一些简单问题,教材中配备一些比较典型的例题,这些例题的教学,要注意以下几个问题:

    1.帮助学生弄清实际问题的意义.由于学生接触实际较少,实践经验不足,许多实际问题的意义不清楚,许多术语不熟悉,这些在教学中要向学生说明.例如测量中的仰角、俯角、视线、铅垂线等等,零件图,特别是剖面图的意义,航行中的方位角等.学生懂得了这些常识,才能理解实际问题.

    2.帮助学生画出草图.把实际问题抽象为几何问题,关键是画出草图,通过图形反映问题中的已知与未知,以及已知和未知量之间的关系.这里要解决好两个问题:

    (1)实际问题基本上是空间三维的问题,要会把它转化为平面问题,画出平面图形.例如飞机在空中俯看地面目标,选取经过飞机、地面目标的垂直于地平面的平面(图1);机器零件大都画出横断面、纵断面(图2);在地面上测两点距离,两个方向夹角,可以画平行地面的平面等.

    (2)船在海上航行,在平面上标出船的位置、灯塔或岸上某目标的位置,这类问题难点在于确定基准点.例如,说灯塔在船的什么方向上,这时船是基准点,如果说船在岸边某一点的什么方向上,这时岸边的这一点是基准点.有时因为船在航行中观测灯塔,基准点在转移,这些都会给画图增加困难.

    在第一册里,介绍过空间里的平行、垂直关系,也介绍过方向角的概念,这些都可以作为学习的基础,教学时可适当复习,帮助学生回忆.

    3.帮助学生根据需要作出辅助线.画出的草图,不一定有直角三角形,为了用解直角三角形的方法解决这些问题,常常需要添加辅助线.在这些问题中,辅助线常常是垂线或者平行线,例如图3中的几个问题中,虚线就是所要添加的辅助线.

    4.有了直角三角形,还要进一步分析,由题目的条件可以知道直角三角形的哪些边或角,题目要求的是哪些边或角,这样才可以用解直角三角形的方法解决这些实际问题.

    一、教学目标

    1.使学生了解仰角、俯角的概念,能根据直角三角形的知识解决实际问题,会把实际问题转化为数学问题来解决;

    2.通过本节的教学,进一步把形和数结合起来,提高学生分析问题、解决实际问题的能力;

    3.通过本节的教学,向学生渗透数学来源于实践又反过来作用于实践的观点,培养他们用数学的意识.

    二、重点·难点·疑点及解决办法

    1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

    2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

    3.疑点:练习中水位为+2.63这一条件学生可能不理解,教师最好用实际教具加以说明.

    4.解决办法:引导学生体会实际问题中的概念,建立数学模型,从而重难点,以教具演示解决疑点.

    三、教学过程

    1.仰角、俯角

    当我们进行测量时,在视线与水平线所成的角中,视线在

    水平线上方的角叫做仰角,在水平线下方的角叫做俯角.

    教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.

    2.例1

    如图,某飞机于空中A处探测到目标C,此时飞行高度米,从飞机上看地平面控制点B的俯角,求飞机A到控制点B距离(精确到1米).

    解决此问题的关键是在于把它转化为数学问题,利用解直角三角报知识来解决,在此之

    前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但

    不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重语学生画几

    何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角得出中的,进而利用解直角三角形的知识就可以解此题了.

    解:在中,

    ∴(米).

    答:飞机A到控制点B的距离约为4221米.

    [例1]小结:本章引言中的例子和例1正好属于应用同一关系式

    来解决的两个实际问题即已知和斜边,求的对边;以及已知和对边,求斜边.

    3.巩固练习P.25.

    如图,某海岛上的观察所A发现海上某船只B并测得其俯角.已知观察所A的标高(当水位为0m时的高度)为43.74m,当时水位为+2.63m,求观察所A到船只B的水平距离BC(精确到1m)

    为了巩固例1,加深学生对仰角、俯角的了解,配备了练习.

    由于学生只接触了一道实际应用题,对其还不熟悉,不会将其转化

    为数学问题,因此教师在学生充分地思考后,应引导学生分析:

    1.谁能将实物图形抽象为几何图形?请一名同学上黑板画出来.

    2.请学生结合图说出已知条件和所求各是什么?

    答:已知,求AB.

    这样,学生运用已有的解直角三角形的知识完全可以解答.

    对于程度较高的学生,教师还可以将此题变式,当船继续行驶到D时,测得俯角,当时水位为-1.15m,求观察所A到船只B的水平距离(精确到1m),请学生独立完成.

    【例2】如图所示,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.

    此题在例1的基础上,又加深了一步,须由A作一条平等于CD的直线交BD于E,构造出,然后进一步求出AE、BE,进而求出BD与CD.

    设置此题,既使成绩较好的学生有足够的训练,同时对较差学生又是巩固,达到分层次教学的目的.

    解:过A作,于是,

    在中,

    ∴(米).

    .

    ∴(米).

    ∴(米).

    (米).

    答:BD的高及水平距离CD分别是32.03米,157.1米.

    练习:为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角,已知人的高度为1.72米,求树高(精确到0.01米).

    要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它.

    探究活动

    一、望海岛

    如图,要测量海岛高度,立两根高度都是3丈的杆,两杆相距1000步,使前杆、后杆、海岛排成一直线。从前杆往回走123步,脚、前杆顶、岛顶共线。从后杆往回走127步,脚、后杆、岛顶共线。问岛高和岛离前杆分别为多少?(在古代,1里=300步,1步=6尺=0.6丈)

    答案:4里55步;102里150步.

    二、望松

    如下图,求出三顶松的高度.

    答案:12丈2尺8寸.

    解直角三形应用举例教案模板


    1.知识结构:

    2.重点和难点分析

    重点和难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

    3.教法建议

    本节知识与实际联系密切,这些知识可以直接用来解决一些实际问题,这在几何的许多章节中是做不到的,所以要充分发挥这一特点,通过教学,培养学生应用数学的意识,解决实际问题的能力.要解决实际问题,首先要能够把实际问题抽象为数学问题,然后运用数学知识解决这些问题,为了使学生能够处理一些简单问题,教材中配备一些比较典型的例题,这些例题的教学,要注意以下几个问题:

    1.帮助学生弄清实际问题的意义.由于学生接触实际较少,实践经验不足,许多实际问题的意义不清楚,许多术语不熟悉,这些在教学中要向学生说明.例如测量中的仰角、俯角、视线、铅垂线等等,零件图,特别是剖面图的意义,航行中的方位角等.学生懂得了这些常识,才能理解实际问题.

    2.帮助学生画出草图.把实际问题抽象为几何问题,关键是画出草图,通过图形反映问题中的已知与未知,以及已知和未知量之间的关系.这里要解决好两个问题:

    (1)实际问题基本上是空间三维的问题,要会把它转化为平面问题,画出平面图形.例如飞机在空中俯看地面目标,选取经过飞机、地面目标的垂直于地平面的平面(图1);机器零件大都画出横断面、纵断面(图2);在地面上测两点距离,两个方向夹角,可以画平行地面的平面等.

    (2)船在海上航行,在平面上标出船的位置、灯塔或岸上某目标的位置,这类问题难点在于确定基准点.例如,说灯塔在船的什么方向上,这时船是基准点,如果说船在岸边某一点的什么方向上,这时岸边的这一点是基准点.有时因为船在航行中观测灯塔,基准点在转移,这些都会给画图增加困难.

    在第一册里,介绍过空间里的平行、垂直关系,也介绍过方向角的概念,这些都可以作为学习的基础,教学时可适当复习,帮助学生回忆.

    3.帮助学生根据需要作出辅助线.画出的草图,不一定有直角三角形,为了用解直角三角形的方法解决这些问题,常常需要添加辅助线.在这些问题中,辅助线常常是垂线或者平行线,例如图3中的几个问题中,虚线就是所要添加的辅助线.

    4.有了直角三角形,还要进一步分析,由题目的条件可以知道直角三角形的哪些边或角,题目要求的是哪些边或角,这样才可以用解直角三角形的方法解决这些实际问题.

    一、教学目标

    1.使学生了解仰角、俯角的概念,能根据直角三角形的知识解决实际问题,会把实际问题转化为数学问题来解决;

    2.通过本节的教学,进一步把形和数结合起来,提高学生分析问题、解决实际问题的能力;

    3.通过本节的教学,向学生渗透数学来源于实践又反过来作用于实践的观点,培养他们用数学的意识.

    二、重点·难点·疑点及解决办法

    1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

    2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

    3.疑点:练习中水位为+2.63这一条件学生可能不理解,教师最好用实际教具加以说明.

    4.解决办法:引导学生体会实际问题中的概念,建立数学模型,从而重难点,以教具演示解决疑点.

    三、教学过程

    1.仰角、俯角

    当我们进行测量时,在视线与水平线所成的角中,视线在

    水平线上方的角叫做仰角,在水平线下方的角叫做俯角.

    教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.

    2.例1

    如图,某飞机于空中A处探测到目标C,此时飞行高度米,从飞机上看地平面控制点B的俯角,求飞机A到控制点B距离(精确到1米).

    解决此问题的关键是在于把它转化为数学问题,利用解直角三角报知识来解决,在此之

    前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但

    不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重语学生画几

    何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角得出中的,进而利用解直角三角形的知识就可以解此题了.

    解:在中,

    ∴(米).

    答:飞机A到控制点B的距离约为4221米.

    [例1]小结:本章引言中的例子和例1正好属于应用同一关系式

    来解决的两个实际问题即已知和斜边,求的对边;以及已知和对边,求斜边.

    3.巩固练习P.25.

    如图,某海岛上的观察所A发现海上某船只B并测得其俯角.已知观察所A的标高(当水位为0m时的高度)为43.74m,当时水位为+2.63m,求观察所A到船只B的水平距离BC(精确到1m)

    为了巩固例1,加深学生对仰角、俯角的了解,配备了练习.

    由于学生只接触了一道实际应用题,对其还不熟悉,不会将其转化

    为数学问题,因此教师在学生充分地思考后,应引导学生分析:

    1.谁能将实物图形抽象为几何图形?请一名同学上黑板画出来.

    2.请学生结合图说出已知条件和所求各是什么?

    答:已知,求AB.

    这样,学生运用已有的解直角三角形的知识完全可以解答.

    对于程度较高的学生,教师还可以将此题变式,当船继续行驶到D时,测得俯角,当时水位为-1.15m,求观察所A到船只B的水平距离(精确到1m),请学生独立完成.

    【例2】如图所示,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.

    此题在例1的基础上,又加深了一步,须由A作一条平等于CD的直线交BD于E,构造出,然后进一步求出AE、BE,进而求出BD与CD.

    设置此题,既使成绩较好的学生有足够的训练,同时对较差学生又是巩固,达到分层次教学的目的.

    解:过A作,于是,

    在中,

    ∴(米).

    .

    ∴(米).

    ∴(米).

    (米).

    答:BD的高及水平距离CD分别是32.03米,157.1米.

    练习:为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角,已知人的高度为1.72米,求树高(精确到0.01米).

    要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它.

    探究活动

    一、望海岛

    如图,要测量海岛高度,立两根高度都是3丈的杆,两杆相距1000步,使前杆、后杆、海岛排成一直线。从前杆往回走123步,脚、前杆顶、岛顶共线。从后杆往回走127步,脚、后杆、岛顶共线。问岛高和岛离前杆分别为多少?(在古代,1里=300步,1步=6尺=0.6丈)

    答案:4里55步;102里150步.

    二、望松

    如下图,求出三顶松的高度.

    答案:12丈2尺8寸.

    【数学教案-解直角三形应用举例相关教学方案】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...