你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >正切余切
  • 正切余切

    发表时间:2022-02-07

    【www.jk251.com - 正切和余切】

    充分准备一份教案是一名教师的职责所在,编写教案能够提高自己的教学研究能力,一份优质的教学方案往往来自教师长时间的经验累积,那么如何写一份初中教案?欢迎大家阅读小编为大家收集整理的《正切余切》。

    第一课时

    一、教学目标

    1.使学生了解正切、余切的概念,能够正确地用、表示直角三角形(其中一个锐角为)中两边的比,了解与成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系。

    2.逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力。

    3.培养学生独立思考、勇于创新的精神。

    二、学法引导

    1.教学方法:运用类比法指导学生探索研究新知。

    2.学生学法:运用类比法主动探索研究新知。

    三、重点、难点、疑点及解决办法

    1.重点:了解正切、余切的概念,熟记特殊角的正切值和余切值。

    2.难点:了解的概念。

    3.疑点:正切与余切概念的混淆.

    4.解决办法:通过类比引出概念和性质,再通过大量直接应用,巩固概念和性质。

    四、教具准备

    投影机、投影片(自制)、三角板

    五、教学步骤

    (一)明确目标

    1.什么是锐角的正弦、余弦?(结合下图回答)。

    2.填表

    3.互为余角的正弦值、余弦值有何关系?

    4.当角度在0°~90°变化时,锐角的正弦值、余弦值有何变化规律?

    5.我们已经掌握一个锐角的正弦(余弦)是指直角三角形中该锐角的对边(邻边)与斜边的比值,那么直角三角形中,两直角边的比值与锐角的关系如何呢?在锐角三角函数中,除正、余弦外,还有其他一些三角函数,本节课我们学习。

    (二)整体感知

    正切、余切的概念,也是本间的重点和关键,是全章知识的基础,对学生今后的学习或工作都十分重要,教材在继第一节正弦和余弦后,又以同样的顺序安排第二节正切余切,像这样,把概论、计算和应用分成两块,每块自与一个整体小循环,第二循环又包含了第一循环的内容,可以有效地克服难点,同时也使学生通过对比,便于掌握锐角三角函数的有关知识。

    (三)教学过程

    1.引入正切、余切概念

    ①本节课我们研究两直角边的比值与锐角的关系,因此同学们首先应思考:当锐角固定时,两直角边的比值是否也固定?

    因为学生在研究过正弦、余弦概念之后,已经接触过这类问题,所以大部分学生能口述证明,并进一步猜测“两直角边的比值一定是”。

    ②给出正切、余切概念。

    如图,在中,把的对边与邻边的比叫做的正切,记作。

    并把的邻边与对边的比叫做的余切,记作,

    2.与的关系

    请学生观察与的表达式,得结论(或,)这个关系式既重要又易于掌握,必须让学生深刻理解,并与区别开.

    3.锐角三角函数

    由上图,,,,,把锐角的正弦、余弦、正切、余切都叫做的锐角三角函数。

    锐角三角函数概念的给出,使学生茅塞顿开,初步理解本节题目。

    问:锐角三角函数能否为负数?

    学生回答这个问题很容易。

    4.特殊角的三角函数。

    ①教师出示幻灯片

    请同学推算30°、45°、60°角的正切、余切值。(如下图)

    通过学生计算完成表格的过程,不仅复习巩固了正切、余切概念,而且使学生熟记特殊角的正切值与余切值,同时渗透了数形结合的数学思想。

    0°,90°正切值与余切值可引导学生查“表”,学生完全能独立查出。

    5.根据互为余角的正弦值与余弦值的关系,结合图形,引导学生发现互为余角的正切值与余切值的关系。

    结论:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。

    即,.

    练习:1)请学生回答与的值各是多少?与?与呢?学生口答之后,还可以为程度较高的学生设置问题:与有何关系?为什么?与呢?

    2)把下列正切或余切改写成余角的余切或正切:

    (1);(2);(3);(4);(5);(6)。

    6.例题

    【例1】求下列各式的值:

    (1);

    (2).

    解:(1);(2)=2.练习1.求下列各式的值:(1);(2);(3);(4);(5).2.填空:(1)(2)若,则锐角(3)若,则锐角学生的计算能力可能不很强,尤其是分式,二次根式的运算,因此这里应查缺补漏,以培养学生运算能力。(四)总结扩展请学生小结:本节课了解了正切、余切的概念及与关系.知道特殊角的正切余切值及互为余角的正切值与余切值的关系.本课用到了数形结合的数学思想.结合及,可扩展为.六、布置作业1.看教材P12~P14,培养学生看书习惯。2.教材P16中习题6.2A组2、3、4、5、6.七、板书设计第二课时一、教学目标1.巩固正、余切概念,学会用正、余切来解决问题.2.通过例题教学,培养学生分析问题、解决问题的能力;通过归纳、概括,培养学生逻辑思维能力。3.培养学生独立思考、勇于创新的精神及良好的学习习惯。二、学法引导1.教学方法:指导探索研究法。2.学生学法:主动探索研究法。三、重点、难点、疑点及解决办法1.重点:用正、余切解直角三角形。2.难点:灵活运用正切、余切。3.疑点:学生可能对正切、余切概念掌握不牢,导致出现之类的错误,教学中应引起重视,使学生熟能生巧。4.解决办法:通过教师精心引导,学生积极思维,主动研究发现,及练习巩固解决重难点及疑点。四、教具准备投影机(或电脑)、自制投影片(或课件)、三角板五、教学步骤(一)明确目标结合图,说出什么是的正切、余切?请班级里较差学生回答,以检测其掌握情况.2.与具有什么关系?答:(或或).3.互为余角的正切值与余切值具有什么关系?答:,3.互为余角的正切值与余切值具有什么关系?答:,4.在0°~90°间,正切、余切值随角度变化而变化的规律是什么?通过以上四个问题,使学生对新学的知识有了系统的认识,便于应用.对概念的巩固最好的途径是配备练习题.因此,教师在引导学生复习有关概念后,应出示练习题(投影片).1.在中,为直角,、、所对的边分别为。①若,,则,,,②若,则2.比较大小:①②③④3.计算题:①;②.(二)整体感知本课安排在本小节末,运用本小节的知识去解决一个简单问题,再次为本章第二节解直角三角形做好准备.当然,这个问题只用上一小节学过的正弦、余弦也可以解决,不过那样做,就要先求出斜边,解的过程要繁琐一些。(三)教学过程1.讲授新课【例】在中,为直角,所对的边分别是,已知,,求(保留两位有效数字).这个题是本大节知识的综合运用,考查知识点面面俱到,是检查全体学生是否全面达到教学目标要求有效途径,教学中应引导学生全体参与,积极地探求各种解法,然后加以比较,优选出最佳方法,以培养学生思维的敏捷性、深刻性,形成良好的思维品质。分析:本题已知和,求,观察图不难发现,边恰好是的对边与邻邦边,因此求可选用以下两个关系式:(1),(2).请学生比较一下,哪一个关系计算更简便呢?答:若选用,由此得,用除以含四位有效数字的数,计算比较麻烦;而选用,由此得.用乘以含四位有效数字的数,计算相对方便.解:,∴解完例题之后,应引导学生小结:本题显示了“除法与乘法在一定条件下可以互相转化”,其中“条件”是与互为倒数.认真分析和利用这种转化,有时可使计算简便.2.巩固练习本节课实际上是对前面课的综合,通过对前面知识的综合运用,以培养学生的比较、分析、概括等逻辑思维能力.因此例题后应安排练习题如下:在中,为直角,、、所对的边分别为.(1)已知,,求和.(2)已知,,求和.(3)已知,,求.(4)已知,,求.(5)已知,,求.(6)已知,,求和(保留两位有效数字).教法说明:给学生足够的时间,引导学生讨论、研究,筛选出最佳关系式使计算简便,既培养学生计算能力,巩固所学知识,又能培养学生的思维能力.[参考答案](1),;(2),;(3);(4);(5);(6),.3.对学有余力的学生,可引导其读教材P15想一想.使学生对正弦、余弦间的关系,正切、余切间的关系以及弦、切间的关系有所了解,保证知识的完整性,为高中三角函数的学习打下基础.教师板书.(四)总结、扩展引导学生总结:1.要认真分析直角三角形中的各边与角的三角函数关系.2.因为同一个角的可以互相转化,所以在选用关系时昼选择乘法使计算较简便.六、布置作业1.看教材P1~P17,培养学生看书习惯。2.教材P17习题A组7、8,学有余力的学生可选做B组题。七、板书设计

    jK251.COm精选阅读

    经典初中教案正切余切


    第一课时

    一、教学目标

    1.使学生了解正切、余切的概念,能够正确地用、表示直角三角形(其中一个锐角为)中两边的比,了解与成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系。

    2.逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力。

    3.培养学生独立思考、勇于创新的精神。

    二、学法引导

    1.教学方法:运用类比法指导学生探索研究新知。

    2.学生学法:运用类比法主动探索研究新知。

    三、重点、难点、疑点及解决办法

    1.重点:了解正切、余切的概念,熟记特殊角的正切值和余切值。

    2.难点:了解的概念。

    3.疑点:正切与余切概念的混淆.

    4.解决办法:通过类比引出概念和性质,再通过大量直接应用,巩固概念和性质。

    四、教具准备

    投影机、投影片(自制)、三角板

    五、教学步骤

    (一)明确目标

    1.什么是锐角的正弦、余弦?(结合下图回答)。

    2.填表

    3.互为余角的正弦值、余弦值有何关系?

    4.当角度在0°~90°变化时,锐角的正弦值、余弦值有何变化规律?

    5.我们已经掌握一个锐角的正弦(余弦)是指直角三角形中该锐角的对边(邻边)与斜边的比值,那么直角三角形中,两直角边的比值与锐角的关系如何呢?在锐角三角函数中,除正、余弦外,还有其他一些三角函数,本节课我们学习。

    (二)整体感知

    正切、余切的概念,也是本间的重点和关键,是全章知识的基础,对学生今后的学习或工作都十分重要,教材在继第一节正弦和余弦后,又以同样的顺序安排第二节正切余切,像这样,把概论、计算和应用分成两块,每块自与一个整体小循环,第二循环又包含了第一循环的内容,可以有效地克服难点,同时也使学生通过对比,便于掌握锐角三角函数的有关知识。

    (三)教学过程

    1.引入正切、余切概念

    ①本节课我们研究两直角边的比值与锐角的关系,因此同学们首先应思考:当锐角固定时,两直角边的比值是否也固定?

    因为学生在研究过正弦、余弦概念之后,已经接触过这类问题,所以大部分学生能口述证明,并进一步猜测“两直角边的比值一定是”。

    ②给出正切、余切概念。

    如图,在中,把的对边与邻边的比叫做的正切,记作。

    并把的邻边与对边的比叫做的余切,记作,

    2.与的关系

    请学生观察与的表达式,得结论(或,)这个关系式既重要又易于掌握,必须让学生深刻理解,并与区别开.

    3.锐角三角函数

    由上图,,,,,把锐角的正弦、余弦、正切、余切都叫做的锐角三角函数。

    锐角三角函数概念的给出,使学生茅塞顿开,初步理解本节题目。

    问:锐角三角函数能否为负数?

    学生回答这个问题很容易。

    4.特殊角的三角函数。

    ①教师出示幻灯片

    请同学推算30°、45°、60°角的正切、余切值。(如下图)

    通过学生计算完成表格的过程,不仅复习巩固了正切、余切概念,而且使学生熟记特殊角的正切值与余切值,同时渗透了数形结合的数学思想。

    0°,90°正切值与余切值可引导学生查“表”,学生完全能独立查出。

    5.根据互为余角的正弦值与余弦值的关系,结合图形,引导学生发现互为余角的正切值与余切值的关系。

    结论:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。

    即,.

    练习:1)请学生回答与的值各是多少?与?与呢?学生口答之后,还可以为程度较高的学生设置问题:与有何关系?为什么?与呢?

    2)把下列正切或余切改写成余角的余切或正切:

    (1);(2);(3);(4);(5);(6)。

    6.例题

    【例1】求下列各式的值:

    (1);

    (2).

    解:(1);(2)=2.练习1.求下列各式的值:(1);(2);(3);(4);(5).2.填空:(1)(2)若,则锐角(3)若,则锐角学生的计算能力可能不很强,尤其是分式,二次根式的运算,因此这里应查缺补漏,以培养学生运算能力。(四)总结扩展请学生小结:本节课了解了正切、余切的概念及与关系.知道特殊角的正切余切值及互为余角的正切值与余切值的关系.本课用到了数形结合的数学思想.结合及,可扩展为.六、布置作业1.看教材P12~P14,培养学生看书习惯。2.教材P16中习题6.2A组2、3、4、5、6.七、板书设计第12页

    正切余切的教学方案


    第一课时

    一、教学目标

    1.使学生了解正切、余切的概念,能够正确地用、表示直角三角形(其中一个锐角为)中两边的比,了解与成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系。

    2.逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力。

    3.培养学生独立思考、勇于创新的精神。

    二、学法引导

    1.教学方法:运用类比法指导学生探索研究新知。

    2.学生学法:运用类比法主动探索研究新知。

    三、重点、难点、疑点及解决办法

    1.重点:了解正切、余切的概念,熟记特殊角的正切值和余切值。

    2.难点:了解的概念。

    3.疑点:正切与余切概念的混淆.

    4.解决办法:通过类比引出概念和性质,再通过大量直接应用,巩固概念和性质。

    四、教具准备

    投影机、投影片(自制)、三角板

    五、教学步骤

    (一)明确目标

    1.什么是锐角的正弦、余弦?(结合下图回答)。

    2.填表

    3.互为余角的正弦值、余弦值有何关系?

    4.当角度在0°~90°变化时,锐角的正弦值、余弦值有何变化规律?

    5.我们已经掌握一个锐角的正弦(余弦)是指直角三角形中该锐角的对边(邻边)与斜边的比值,那么直角三角形中,两直角边的比值与锐角的关系如何呢?在锐角三角函数中,除正、余弦外,还有其他一些三角函数,本节课我们学习。

    (二)整体感知

    正切、余切的概念,也是本间的重点和关键,是全章知识的基础,对学生今后的学习或工作都十分重要,教材在继第一节正弦和余弦后,又以同样的顺序安排第二节正切余切,像这样,把概论、计算和应用分成两块,每块自与一个整体小循环,第二循环又包含了第一循环的内容,可以有效地克服难点,同时也使学生通过对比,便于掌握锐角三角函数的有关知识。

    (三)教学过程

    1.引入正切、余切概念

    ①本节课我们研究两直角边的比值与锐角的关系,因此同学们首先应思考:当锐角固定时,两直角边的比值是否也固定?

    因为学生在研究过正弦、余弦概念之后,已经接触过这类问题,所以大部分学生能口述证明,并进一步猜测“两直角边的比值一定是”。

    ②给出正切、余切概念。

    如图,在中,把的对边与邻边的比叫做的正切,记作。

    并把的邻边与对边的比叫做的余切,记作,

    2.与的关系

    请学生观察与的表达式,得结论(或,)这个关系式既重要又易于掌握,必须让学生深刻理解,并与区别开.

    3.锐角三角函数

    由上图,,,,,把锐角的正弦、余弦、正切、余切都叫做的锐角三角函数。

    锐角三角函数概念的给出,使学生茅塞顿开,初步理解本节题目。

    问:锐角三角函数能否为负数?

    学生回答这个问题很容易。

    4.特殊角的三角函数。

    ①教师出示幻灯片

    请同学推算30°、45°、60°角的正切、余切值。(如下图)

    通过学生计算完成表格的过程,不仅复习巩固了正切、余切概念,而且使学生熟记特殊角的正切值与余切值,同时渗透了数形结合的数学思想。

    0°,90°正切值与余切值可引导学生查“表”,学生完全能独立查出。

    5.根据互为余角的正弦值与余弦值的关系,结合图形,引导学生发现互为余角的正切值与余切值的关系。

    结论:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。

    即,.

    练习:1)请学生回答与的值各是多少?与?与呢?学生口答之后,还可以为程度较高的学生设置问题:与有何关系?为什么?与呢?

    2)把下列正切或余切改写成余角的余切或正切:

    (1);(2);(3);(4);(5);(6)。

    6.例题

    【例1】求下列各式的值:

    (1);

    (2).

    解:(1);(2)=2.练习1.求下列各式的值:(1);(2);(3);(4);(5).2.填空:(1)(2)若,则锐角(3)若,则锐角学生的计算能力可能不很强,尤其是分式,二次根式的运算,因此这里应查缺补漏,以培养学生运算能力。(四)总结扩展请学生小结:本节课了解了正切、余切的概念及与关系.知道特殊角的正切余切值及互为余角的正切值与余切值的关系.本课用到了数形结合的数学思想.结合及,可扩展为.六、布置作业1.看教材P12~P14,培养学生看书习惯。2.教材P16中习题6.2A组2、3、4、5、6.七、板书设计第二课时一、教学目标1.巩固正、余切概念,学会用正、余切来解决问题.2.通过例题教学,培养学生分析问题、解决问题的能力;通过归纳、概括,培养学生逻辑思维能力。3.培养学生独立思考、勇于创新的精神及良好的学习习惯。二、学法引导1.教学方法:指导探索研究法。2.学生学法:主动探索研究法。三、重点、难点、疑点及解决办法1.重点:用正、余切解直角三角形。2.难点:灵活运用正切、余切。3.疑点:学生可能对正切、余切概念掌握不牢,导致出现之类的错误,教学中应引起重视,使学生熟能生巧。4.解决办法:通过教师精心引导,学生积极思维,主动研究发现,及练习巩固解决重难点及疑点。四、教具准备投影机(或电脑)、自制投影片(或课件)、三角板五、教学步骤(一)明确目标结合图,说出什么是的正切、余切?请班级里较差学生回答,以检测其掌握情况.2.与具有什么关系?答:(或或).3.互为余角的正切值与余切值具有什么关系?答:,3.互为余角的正切值与余切值具有什么关系?答:,4.在0°~90°间,正切、余切值随角度变化而变化的规律是什么?通过以上四个问题,使学生对新学的知识有了系统的认识,便于应用.对概念的巩固最好的途径是配备练习题.因此,教师在引导学生复习有关概念后,应出示练习题(投影片).1.在中,为直角,、、所对的边分别为。①若,,则,,,②若,则2.比较大小:①②③④3.计算题:①;②.(二)整体感知本课安排在本小节末,运用本小节的知识去解决一个简单问题,再次为本章第二节解直角三角形做好准备.当然,这个问题只用上一小节学过的正弦、余弦也可以解决,不过那样做,就要先求出斜边,解的过程要繁琐一些。(三)教学过程1.讲授新课【例】在中,为直角,所对的边分别是,已知,,求(保留两位有效数字).这个题是本大节知识的综合运用,考查知识点面面俱到,是检查全体学生是否全面达到教学目标要求有效途径,教学中应引导学生全体参与,积极地探求各种解法,然后加以比较,优选出最佳方法,以培养学生思维的敏捷性、深刻性,形成良好的思维品质。分析:本题已知和,求,观察图不难发现,边恰好是的对边与邻邦边,因此求可选用以下两个关系式:(1),(2).请学生比较一下,哪一个关系计算更简便呢?答:若选用,由此得,用除以含四位有效数字的数,计算比较麻烦;而选用,由此得.用乘以含四位有效数字的数,计算相对方便.解:,∴解完例题之后,应引导学生小结:本题显示了“除法与乘法在一定条件下可以互相转化”,其中“条件”是与互为倒数.认真分析和利用这种转化,有时可使计算简便.2.巩固练习本节课实际上是对前面课的综合,通过对前面知识的综合运用,以培养学生的比较、分析、概括等逻辑思维能力.因此例题后应安排练习题如下:在中,为直角,、、所对的边分别为.(1)已知,,求和.(2)已知,,求和.(3)已知,,求.(4)已知,,求.(5)已知,,求.(6)已知,,求和(保留两位有效数字).教法说明:给学生足够的时间,引导学生讨论、研究,筛选出最佳关系式使计算简便,既培养学生计算能力,巩固所学知识,又能培养学生的思维能力.[参考答案](1),;(2),;(3);(4);(5);(6),.3.对学有余力的学生,可引导其读教材P15想一想.使学生对正弦、余弦间的关系,正切、余切间的关系以及弦、切间的关系有所了解,保证知识的完整性,为高中三角函数的学习打下基础.教师板书.(四)总结、扩展引导学生总结:1.要认真分析直角三角形中的各边与角的三角函数关系.2.因为同一个角的可以互相转化,所以在选用关系时昼选择乘法使计算较简便.六、布置作业1.看教材P1~P17,培养学生看书习惯。2.教材P17习题A组7、8,学有余力的学生可选做B组题。七、板书设计

    数学教案-正切余切教案模板


    锐角的三角比

    ------正切和余切

    一、教学目标:

    1、理解锐角的正切、余切概念,能正确使用锐角的正切、余切的符号语言。

    2、通过探究活动,培养学生观察、分析问题,归纳、总结知识的能力;通过题目的变式,培养用转化思想解决数学问题的能力;通过不同题型的训练,提高学生的通试能力;通过探索题的教学,培养学生的创新意识。

    3、通过不同题型的训练,培养学生的数学学习素养,通过学习形式的变换,孕育学生的品质。

    4、培养学生间良好的互动协作精神和对知识强烈的求知欲。

    二、教学设计的指导思想:

    贯彻“教为主导、学为主体、练为主线”的原则,引导学生自始至终地参与学习的全过程,让学生在探索过程中学得愉快、扎实、灵活,学会学习,发展能力。

    三、重、难点及教学策略:

    重点:锐角的正切、余切概念,探究能力的培养

    难点:理解一个锐角确定的直角三角形的两边的比是一个确定的值。

    策略:突出重点、突破难点。

    四、教学准备:

    U盘,电脑,一副三角板,一块三角形模型,网格纸

    五、教学环节的流程简图:

    创设问题情境——→问题的研究——→讲授新课——→归纳小结及布置作业

    六、教学过程:

    一)创设问题情境:

    1、引领练习:

    ①在Rt△ABC中,∠C=90°,当∠A=45°时,

    随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

    ②在Rt△ABC中,∠C=90°,当∠A=30°时,

    随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

    2、提出问题:

    在Rt△ABC中,∠C=90°,一般情况下,

    当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值是否发生变化?

    二)问题的研究:

    1、几何画板动画演示:

    2、运用定理证明:

    得出结论:在Rt△ABC中,∠C=90°,一般情况下,

    当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值不变。

    三)讲授新课:

    课题:29.1正切和余切

    1、基本概念:

    ①在Rt△ABC中,∠C=90°,

    正切:tgA==

    (tangent)(tanA)

    (tg∠BAC)

    余切:ctgA==

    (cotA)

    ②tgA=

    ③若∠A+∠B=90°,则tgA=ctgB,ctgA=tgB

    2、例题讲解:

    例1:在Rt△ABC中,∠C=90°,AC=12,BC=7,

    ①求tgA的值.

    ②求tgB的值.

    ③过C点作CD⊥AB于D,求tg∠DCA的值.

    3、巩固练习:

    ①选择题:

    1.在Rt△ABC中,∠C=90°,若各边的长都扩大3倍,则∠B的正切值()

    A.扩大3倍B.缩小为原来的C.没有变化D.扩大9倍

    2.在Rt△ABC中,∠C=90°,∠A和∠B的对边是a,b,则与的值相等的是()

    A.tgAB.tgBC.ctgAD.ctgB

    ②解答题:

    如图,△ABC是直角三角形,∠C=90°,D、E在BC上,AC=4,

    BD=5,DE=2,EC=3,∠ABC=α,

    ∠ADC=β,∠AEC=γ,

    求:①tgα。

    ②ctgβ。

    ③tgγ。

    4、探索题:能否在网格纸中画一个Rt△,使其中一个锐角的正切值为。

    四)小结:(略)

    五)思考题:已知:在Rt△ABC中,∠C=90°,tgA、tgB是方程的两根,求m.。

    六)布置作业:

    七、板书设计:(略)

    八、教学随笔:(略)

    【正切余切】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...