你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >数学教案-可化为一元二次方程的分式方程的教学方案
  • 数学教案-可化为一元二次方程的分式方程的教学方案

    发表时间:2022-02-06

    初中教师上课前最好是准备一份教案,编写教案能够提高自己的教学研究能力,一份完整的教案有许多内容,优秀的初中教案是什么样子的?《数学教案-可化为一元二次方程的分式方程的教学方案》是小编为大家精心挑选的范文,希望你喜欢。

    一、教学目标

    1.使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.

    2.通过本节课的教学,向学生渗透“转化”的数学思想方法;

    3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点.

    二、重点难点疑点及解决办法

    1.教学重点:可化为一元二次方程的分式方程的解法.

    2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.

    3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.

    4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0.

    三、教学步骤

    (一)教学过程

    1.复习提问

    (1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?

    (2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

    (3)解方程,并由此方程说明解方程过程中产生增根的原因.

    通过(1)、(2)、(3)的准备,可直接点出本节的内容:可化为一元二次方程的分式方程的解法相同.

    在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.

    在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.

    2.例题讲解

    例1解方程.

    分析对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正.

    解:两边都乘以,得

    去括号,得

    整理,得

    解这个方程,得

    检验:把代入,所以是原方程的根.

    ∴原方程的根是.

    虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学

    生容易犯的类型错误应加以强调,如在第一步中.需强调方程两边同时乘以最简公分母.另

    外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解

    分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调.

    例2解方程

    分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是

    正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所

    以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母.

    解:方程两边都乘以,约去分母,得

    整理后,得

    解这个方程,得

    检验:把代入,它不等于0,所以是原方程的根,把

    代入它等于0,所以是增根.

    ∴原方程的根是

    师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较.

    例3解方程.

    分析:此题也可像前面例l、例2一样通过去分母解决,学生可以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻求简便方式,通过引导学生仔细观察发现,方程中含有未知数的部分和互为倒数,由此可设,则可通过换元法来解题,通过求出y后,再求原方程的未知数的值.

    解:设,那么,于是原方程变形为

    两边都乘以y,得

    解得

    .

    当时,,去分母,得

    解得;

    当时,,去分母整理,得

    检验:把分别代入原方程的分母,各分母均不等于0.

    ∴原方程的根是

    ,.

    此题在解题过程中,经过两次“转化”,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验.

    巩固练习:教材P49中1、2引导学笔答.

    (二)总结、扩展

    对于小结,教师应引导学生做出.

    本节内容的小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行.

    本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了可化为一元二次方程的分式方程的解法,在具体方程的解法上,适用了“转化”与“换元”的基本数学思想与基本数学方法.

    此小结的目的,使学生能利用“类比”的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握.

    四、布置作业

    1.教材P50中A1、2、3.

    2.教材P51中B1、2

    五、板书设计

    探究活动1

    解方程:

    分析:若去分母,则会变为高次方程,这样解起来,比较繁,注意到分母中都有,可用换元法降次

    设,则原方程变为

    ∴或无解

    经检验:是原方程的解

    探究活动2

    有农药一桶,倒出8升后,用水补满,然后又倒出4升,再用水补满,此时农药与水的比为18:7,求桶的容积.

    解:设桶的容积为升,第一次用水补满后,浓度为,第二次倒出的农药数为4.升,两次共倒出的农药总量(8+4)占原来农药,故

    整理,

    (舍去)

    答:桶的容积为40升.

    Jk251.coM编辑推荐

    经典初中教案可化为一元二次方程的分式方程


    一、教学目标

    1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.

    2.通过本节课的教学,向学生渗透“转化”的数学思想方法;

    3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点.

    二、重点·难点·疑点及解决办法

    1.教学重点:的解法.

    2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.

    3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.

    4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0.

    三、教学步骤

    (一)教学过程

    1.复习提问

    (1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?

    (2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

    (3)解方程,并由此方程说明解方程过程中产生增根的原因.

    通过(1)、(2)、(3)的准备,可直接点出本节的内容:的解法相同.

    在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.

    在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.

    2.例题讲解

    例1解方程.

    分析对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正.

    解:两边都乘以,得

    去括号,得

    整理,得

    解这个方程,得

    检验:把代入,所以是原方程的根.

    ∴原方程的根是.

    虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学

    生容易犯的类型错误应加以强调,如在第一步中.需强调方程两边同时乘以最简公分母.另

    外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解

    分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调.

    例2解方程

    分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是

    正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所

    以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母.

    解:方程两边都乘以,约去分母,得

    整理后,得

    解这个方程,得

    检验:把代入,它不等于0,所以是原方程的根,把

    代入它等于0,所以是增根.

    ∴原方程的根是

    师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较.

    第12页

    可化为一元一次方程的分式方程


    一、教学目标

    1.使学生理解分式方程的意义.

    2.使学生掌握的一般解法.

    3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验很方法.

    4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握的解法,使学生熟练掌握解分式方程的技巧.

    5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.

    二、教学重点和难点

    1.教学重点:

    (1)的解法.

    (2)分式方程转化为整式方程的方法及其中的转化思想.

    2.教学难点:理解解分式方程时产生增根的原因.

    三、教学方法

    启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.

    四、教学手段

    演示法和同学练习相结合,以练习为主.

    五、教学过程

    (一)复习及引入新课

    1.提问:什么叫方程?什么叫方程的解?

    答:含有未知数的等式叫做方程.

    使方程两边相等的未知数的值,叫做方程的解.

    2.

    解:(1)当时,

    左边=,

    右边=0,

    ∴左边=右边,

    (2)

    (3)

    3、在本章开始我们曾提出一个问题,经过分析得到问题的量为两个分式:,根据量间的关系列出方程:

    这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.

    (二)新课

    板书课题:

    板书:分式方程的定义.

    分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.

    练习:判断下列各式哪个是分式方程.(投影)

    (1);(2);(3);

    (4);(5)

    在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)(5)是分式方程.

    1、如何求解方程?

    先由同学讨论如何解这个方程.

    在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.如何去掉?方程两边同乘最简公分母.

    解:两边同乘以最简公分母x(x-6)得

    90(x-6)=60x解这个整式方程得x=18.

    如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.

    检验:把x=18代入原方程

    ,

    左边=右边

    ∴x=18是原方程的解.

    2、如何解方程?

    此题可由学生讨论解决.

    解:方程两边同乘最简公分母(x+1)(x-1),得整式方程x+1=2

    解整式方程,得x=1.

    x=1时原方程的解是否正确?

    检验:将x=1代入原方程,可知x=1使分式方程两边的分式分母均为零,这两个分式没意义,因此x=1不是原分式方程的解.

    ∴原方程无解.

    讨论:1、2两题都是方程两边同除最简公分母将分式方程转化为整式方程,为什么2求出的x=1不是原方程的解,而我们又得到了x=1呢?

    分析:方程同解原理2指出:方程的两边都乘以不等于零的同一个数,所得的方程与原方程同解.

    在解1中,方程两边都乘以x(x-6),接着求出x=18,而当x=18时,2(x+5)=216,所以相当于方程两边都乘以16(≠0),因此所得的整式方程与原方程同解.

    在解2中,方程两边都乘以(x+1)(x-1),接着求出x=1,相当于方程两边都乘以零,结果使原方程无意义,这样得到的整式方程与原方程不同解.

    像这样,在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根.

    注意:由分式方程转化为一元一次方程过程中,要去分母就必须同乘一个整式,但整式可能为零,不能满足方程变换同解的原则,就使得分式方程可能产生增根,因此解分式方程后就必须检验.

    由此可以想到,只要把求得的x的值代入所乘的整式(即最简公分母),若该式的值不等于零,则是原方程的根;若该式的值为零,则是原方程的增根.如能保证求解过程正确,则这种验根方法比较简便.

    例1、解方程

    对于例题给学生示范做题的格式、步骤.(投影显示步骤格式)

    解:方程两边同乘x(x-2),约去分母,得

    5(x-2)=7x解这个整式方程,得

    x=5.

    检验:把x=-5代入最简公分母

    x(x-2)=35≠0,

    ∴x=-5是原方程的解.

    例2、解方程

    解:方程两边同乘最简公分母(x-2),约去分母,得

    1=x-1-3(x-2).(-3这项不要忘乘)

    解这个整式方程,得

    x=2.

    检验:当x=2时,代入最简公分母(x-2)=0,

    ∴x=2是增根,

    ∴原方程无解.

    注意:要求学生一定要严格按解题格式步骤完成.

    (三)总结

    解分式方程的一般步骤:

    1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.

    2.解这个整式方程.

    3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.

    (四)练习

    教材P.98中1由学生在黑板上写,教师订正.

    六、作业

    教材P.101中1.

    七、板书设计

    一元二次方程


    教学目标:(1)理解一元二次方程的概念

    (2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

    (2)会用因式分解法解一元二次方程

    教学重点:一元二次方程的概念、一元二次方程的一般形式

    教学难点:因式分解法解一元二次方程

    教学过程:

    (一)创设情景,引入新课

    实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0

    由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

    (二)新授

    1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)

    练习

    2:一元二次方程的一般形式(形如aX+bX+c=0)

    任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零

    3:讲解例子

    4:利用因式分解法解一元二次方程

    5:讲解例子

    6:一般步骤

    练习

    (三)小结

    (四)布置作业

    板书设计

    数学教案-可化为一元一次方程的分式方程相关教学方案


    一、教学目标

    1.使学生理解分式方程的意义.

    2.使学生掌握可化为一元一次方程的分式方程的一般解法.

    3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验很方法.

    4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.

    5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.

    二、教学重点和难点

    1.教学重点:

    (1)可化为一元一次方程的分式方程的解法.

    (2)分式方程转化为整式方程的方法及其中的转化思想.

    2.教学难点:理解解分式方程时产生增根的原因.

    三、教学方法

    启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.

    四、教学手段

    演示法和同学练习相结合,以练习为主.

    五、教学过程

    (一)复习及引入新课

    1.提问:什么叫方程?什么叫方程的解?

    答:含有未知数的等式叫做方程.

    使方程两边相等的未知数的值,叫做方程的解.

    2.

    解:(1)当时,

    左边=,

    右边=0,

    ∴左边=右边,

    (2)

    (3)

    3、在本章开始我们曾提出一个问题,经过分析得到问题的量为两个分式:,根据量间的关系列出方程:

    这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.

    (二)新课

    板书课题:

    板书:分式方程的定义.

    分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.

    练习:判断下列各式哪个是分式方程.(投影)

    (1);(2);(3);

    (4);(5)

    在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)(5)是分式方程.

    1、如何求解方程?

    先由同学讨论如何解这个方程.

    在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.如何去掉?方程两边同乘最简公分母.

    解:两边同乘以最简公分母x(x-6)得

    90(x-6)=60x解这个整式方程得x=18.

    如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.

    检验:把x=18代入原方程

    ,

    左边=右边

    ∴x=18是原方程的解.

    2、如何解方程?

    此题可由学生讨论解决.

    解:方程两边同乘最简公分母(x+1)(x-1),得整式方程x+1=2

    解整式方程,得x=1.

    x=1时原方程的解是否正确?

    检验:将x=1代入原方程,可知x=1使分式方程两边的分式分母均为零,这两个分式没意义,因此x=1不是原分式方程的解.

    ∴原方程无解.

    讨论:1、2两题都是方程两边同除最简公分母将分式方程转化为整式方程,为什么2求出的x=1不是原方程的解,而我们又得到了x=1呢?

    分析:方程同解原理2指出:方程的两边都乘以不等于零的同一个数,所得的方程与原方程同解.

    在解1中,方程两边都乘以x(x-6),接着求出x=18,而当x=18时,2(x+5)=216,所以相当于方程两边都乘以16(≠0),因此所得的整式方程与原方程同解.

    在解2中,方程两边都乘以(x+1)(x-1),接着求出x=1,相当于方程两边都乘以零,结果使原方程无意义,这样得到的整式方程与原方程不同解.

    像这样,在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根.

    注意:由分式方程转化为一元一次方程过程中,要去分母就必须同乘一个整式,但整式可能为零,不能满足方程变换同解的原则,就使得分式方程可能产生增根,因此解分式方程后就必须检验.

    由此可以想到,只要把求得的x的值代入所乘的整式(即最简公分母),若该式的值不等于零,则是原方程的根;若该式的值为零,则是原方程的增根.如能保证求解过程正确,则这种验根方法比较简便.

    例1、解方程

    对于例题给学生示范做题的格式、步骤.(投影显示步骤格式)

    解:方程两边同乘x(x-2),约去分母,得

    5(x-2)=7x解这个整式方程,得

    x=5.

    检验:把x=-5代入最简公分母

    x(x-2)=35≠0,

    ∴x=-5是原方程的解.

    例2、解方程

    解:方程两边同乘最简公分母(x-2),约去分母,得

    1=x-1-3(x-2).(-3这项不要忘乘)

    解这个整式方程,得

    x=2.

    检验:当x=2时,代入最简公分母(x-2)=0,

    ∴x=2是增根,

    ∴原方程无解.

    注意:要求学生一定要严格按解题格式步骤完成.

    (三)总结

    解分式方程的一般步骤:

    1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.

    2.解这个整式方程.

    3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.

    (四)练习

    教材P.98中1由学生在黑板上写,教师订正.

    六、作业

    教材P.101中1.

    七、板书设计

    数学教案-一元二次方程的教学方案


    教学目标:(1)理解一元二次方程的概念

    (2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

    (2)会用因式分解法解一元二次方程

    教学重点:一元二次方程的概念、一元二次方程的一般形式

    教学难点:因式分解法解一元二次方程

    教学过程:

    (一)创设情景,引入新课

    实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0

    由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

    (二)新授

    1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)

    练习

    2:一元二次方程的一般形式(形如aX+bX+c=0)

    任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零

    3:讲解例子

    4:利用因式分解法解一元二次方程

    5:讲解例子

    6:一般步骤

    练习

    (三)小结

    (四)布置作业

    板书设计

    一元二次方程


    教学目标

    1.理解直接开平方法与平方根运算的联系,学会用直接开平方法解特殊的一元二次方程;培养基本的运算能力;

    2.知道形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解.培养观察、比较、分析、综合等能力,会应用学过的知识去解决新的问题;

    3.鼓励学生积极主动的参与“教”与“学”的整个过程,体会解方程过程中所蕴涵的化归思想、整体思想和降次策略.

    教学重点及难点

    1、用直接开平方法解一元二次方程;

    2、理解直接开平方法中的整体思想,懂得(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解

    教学过程设计

    一、情景引入,理解方法

    看一看:特殊奥林匹克运动会的会标

    想一想:

    在XX年的特殊奥林匹克运动会的筹备过程中制玩具节举办的更加隆重,xx学校将在运动场搭建一个舞台,其中一个方案是:在运动场正中间搭建一个面积为144平方米的正方形舞台,那么请问这个舞台的各边边长将会是多少米呢?

    解:由题意得:x2=144

    根据平方根的意义得:x=±12

    ∴原方程的解是:x1=12,x2=-12

    ∵边长不能为负数

    ∴x=12

    了解方法:

    上述解方程的方法叫做直接开平方法.通过直接将某一个数开平方,解一元二次方程的方法叫做直接开平方法.

    【说明】用开平方法解形如ax2+c=0(a≠0)的方程有三种可能性,学生归纳是难点,教师要在学生具体感知的基础上进行具体概括.通过两个阶段联系后的探究意在培养学生探究一般规律的能力..

    第三阶段:怎样解方程(1+x)2=144?

    请四人学习小组共同研究,并给出一个解题过程.可以参考课本或其他资料.小组长负责清楚的记录解题过程.

    第四阶段:众人齐心当考官!

    请各四人小组试着编一个类似于(x+1)2=144这样能用直接开平方法解的一元二次方程.

    1、分析学生所编的方程.

    2、从学生的编题中挑出一个方程给学生练习.

    3、出示:思考:下列方程又该如何应用直接开平方法求解呢?

    4(x+1)2-144=0

    归纳:形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解.

    【说明】在第三、四阶段的讲解和练习中教师需让学生体会到其中蕴涵了整体思想.

    三、巩固方法,提高能力

    请大家帮帮忙,挑一挑,拣一拣,下列一元二次方程中,哪些更适宜用直接开平方法来解呢?

    ⑴x2=3⑵3t2-t=0

    ⑶3y2=27⑷(y-1)2-4=0

    ⑸(2x+3)2=6⑹x2=36x

    四、自主小结

    今天我们学会了什么方法解一元二次方程?适合用开平方法解的一元二次方程有什么特点?

    一元二次方程相关教学方案


    教学目标

    1.了解整式方程和的概念;

    2.知道的一般形式,会把化成一般形式。

    3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

    教学重点和难点:

    重点:的概念和它的一般形式。

    难点:对的一般形式的正确理解及其各项系数的确定。

    教学建议:

    1.教材分析:

    1)知识结构:本小节首先通过实例引出的概念,介绍了的一般形式以及中各项的名称。

    2)重点、难点分析

    理解的定义:

    是的重要组成部分。方程,只有当时,才叫做。如果且,它就是了。解题时遇到字母系数的方程可能出现以下情况:

    (1)的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合的定义。

    (2)条件是用“关于的”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的”,这时题中隐含了的条件,这在解题中是不能忽略的。

    (3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是,解题时就会有不同的结果。

    教学目的

    1.了解整式方程和的概念;

    2.知道的一般形式,会把化成一般形式。

    3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

    教学难点和难点:

    重点:

    1.的有关概念

    2.会把化成一般形式

    难点:的含义.

    教学过程设计

    一、引入新课

    引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

    分析:1.要解决这个问题,就要求出铁片的长和宽。

    2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

    3.让学生自己列出方程(x(x十5)=150)

    深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

    二、新课

    1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

    2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说首先必须是一个整式方程,但是一个整式方程未必就是一个、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做.(板书的定义)

    3.强化的概念

    下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是?

    (1)3x十2=5x—3:(2)x2=4

    (2)(x十3)(3x·4)=(x十2)2;(4)(x—1)(x—2)=x2十8

    从以上4例让学生明白判断一个方程是否是不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

    4.概念的延伸

    提问:很多吗?你有办法一下写出所有的吗?

    引导学生回顾的定义,分析项的情况,启发学生运用字母,找到的一般形式

    ax2+bx+c=0(a≠0)

    1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

    2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

    3).强调:的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

    强化概念(课本P6)

    1.说出下列的二次项系数、一次项系数、常数项:

    (1)x2十3x十2=O(2)x2—3x十4=0;(3)3x2-5=0

    (4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。

    2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

    (1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

    课堂小节

    (1)本节课主要介绍了一类很重要的方程—一(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

    (2)要知道的一般形式ax2十bx十c=0(a≠0)并且注意的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

    (3)要很熟练地说出随便一个中一二次项、一次项、常数项:二次项系数、一次项系数.

    课外作业:略

    【数学教案-可化为一元二次方程的分式方程的教学方案】相关推荐
    动物在自然界中的作用初中教案精选

    一、教学目标1、能举例说明动物在维持生态平衡、促进生态系统的物质循环和帮助植物传粉、传播种子等方面的作用。2、认同动物是生物圈中重要成员的观点,培养学生爱护动物、保护动物的情感。3、学会用辩证的观点来...

    第 生物的进化教案

    第2节生物的进化一.教学目标:1.列举古生物学化石方面的证据说明生物是进化的;2.简述达尔文的自然选择学说的主要内容;3.形成生物进化的基本观点。二.教学重难点:4.生物化石的形成过程和化石记录的生物...