【www.jk251.com - 伯牙绝弦教学设计】
随着初中教师工作的不断熟练,我们需要撰写教案,做好教案有利于教学活动的开展,用心编写教案才能促进初中的教学进一步发展,什么样的初中教案比较高质量?《圆心角弧弦弦心距之间的关系的教学方案》是小编为大家精心挑选的范文,希望你喜欢。
第一课时(一)
教学目标:
(1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;
(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;
(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.
教学重点、难点:
重点:圆心角、弧、弦、弦心距之间关系定理的推论.
难点:从感性到理性的认识,发现、归纳能力的培养.
教学活动设计
教学内容设计
(一)圆的对称性和旋转不变性
学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.
引出圆心角和弦心距的概念:
圆心角定义:顶点在圆心的角叫圆心角.
弦心距定义:从圆心到弦的距离叫做弦心距.
(二)
应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.
定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.
(三)剖析定理得出推论
问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)
举出反例:如图,∠AOB=∠COD,但ABCD,.(强化对定理的理解,培养学生的思维批判性.)
问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)
(四)应用、巩固和反思
例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.
解(略,教材87页)
例题拓展:当P点在圆上或圆内是否还有AB=CD呢?
(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)
练习:(教材88页练习)
1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:.
(1)如果AB=CD,那么______,______,______;
(2)如果OE=OG,那么______,______,______;
(3)如果=,那么______,______,______;
(4)如果∠AOB=∠COD,那么______,______,______.
(目的:巩固基础知识)
2、(教材88页练习3题,略.定理的简单应用)
(五)小结:学生自己归纳,老师指导.
知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.
能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.
(六)作业:教材P99中1(1)、2、3.
第二课时(二)
教学目标:
(1)理解1°弧的概念,能熟练地应用本节知识进行有关计算;
(2)进一步培养学生自学能力,应用能力和计算能力;
(3)通过例题向学生渗透数形结合能力.
教学重点、难点:
重点:圆心角、弧、弦、弦心距之间的相等关系的应用.
难点:理解1°弧的概念.
教学活动设计:
(一)阅读理解
学生独立阅读P89中,1°的弧的概念,使学生从感性的认识到理性的认识.
理解:
(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.
(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.
(3)圆心角的度数和它们对的弧的度数相等.
(二)概念巩固
1、判断题:
(1)等弧的度数相等();
(2)圆心角相等所对应的弧相等();
(3)两条弧的长度相等,则这两条弧所对应的圆心角相等()
2、解得题:
(1)度数是5°的圆心角所对的弧的度数是多少?为什么?
(2)5°的圆心角对着多少度的弧?5°的弧对着多少度的圆心角?
(3)n°的圆心角对着多少度的弧?n°的弧对着多少度的圆心角?
(三)疑难解得
对于①弧相等;②弧的长度相等;③弧的度数相等;④圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.
特别是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.
(四)应用、归纳、反思
例1、如图,在⊙O中,弦AB所对的劣弧为圆的,圆的半径为2cm,求AB的长.
学生自主分析,写出解题过程,交流指导.
解:(参看教材P89)
注意:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要特别关注和指导.
反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.
例2、如图,已知AB和CD是⊙O的两条直径,弦CE∥AB,=40°,求∠BOD的度数.
题目从“分析——解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.
(解答参考教材P90)
题目拓展:
1、已知:如上图,已知AB和CD是⊙O的两条直径,弦CE∥AB,求证:=.
2、已知:如上图,已知AB和CD是⊙O的两条直径,弦=,求证:CE∥AB.
目的:是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.
(五)小节(略)
(六)作业:教材P100中4、5题.
探究活动
我们已经研究过:已知点O是∠BPD的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,则AB=CD;现在,若⊙O与∠EPF的两边所在的直线分别交于点A、B和C、D,请你结合图形,添加一个适当的条件,使OP为∠BPD的平分线.
解(略)
①AB=CD;
②=.(等等)
Jk251.coM编辑推荐
经典初中教案圆心角弧弦弦心距之间的关系
第一课时(一)
教学目标:
(1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;
(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;
(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.
教学重点、难点:
重点:圆心角、弧、弦、弦心距之间关系定理的推论.
难点:从感性到理性的认识,发现、归纳能力的培养.
教学活动设计
教学内容设计
(一)圆的对称性和旋转不变性
学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.
引出圆心角和弦心距的概念:
圆心角定义:顶点在圆心的角叫圆心角.
弦心距定义:从圆心到弦的距离叫做弦心距.
(二)
应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.
定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.
(三)剖析定理得出推论
问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)
举出反例:如图,∠AOB=∠COD,但ABCD,.(强化对定理的理解,培养学生的思维批判性.)
问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)
(四)应用、巩固和反思
例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.
解(略,教材87页)
例题拓展:当P点在圆上或圆内是否还有AB=CD呢?
(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)
练习:(教材88页练习)
1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:.
(1)如果AB=CD,那么______,______,______;
(2)如果OE=OG,那么______,______,______;
(3)如果=,那么______,______,______;
(4)如果∠AOB=∠COD,那么______,______,______.
(目的:巩固基础知识)
2、(教材88页练习3题,略.定理的简单应用)
(五)小结:学生自己归纳,老师指导.
知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.
能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.
(六)作业:教材P99中1(1)、2、3.
第12页
数学教案-圆心角弧弦弦心距之间的关系初中教案精选
第一课时圆心角、弧、弦、弦心距之间的关系(一)
教学目标:
(1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;
(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;
(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.
教学重点、难点:
重点:圆心角、弧、弦、弦心距之间关系定理的推论.
难点:从感性到理性的认识,发现、归纳能力的培养.
教学活动设计
教学内容设计
(一)圆的对称性和旋转不变性
学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.
引出圆心角和弦心距的概念:
圆心角定义:顶点在圆心的角叫圆心角.
弦心距定义:从圆心到弦的距离叫做弦心距.
(二)圆心角、弧、弦、弦心距之间的关系
应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.
定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.
(三)剖析定理得出推论
问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)
举出反例:如图,∠AOB=∠COD,但ABCD,.(强化对定理的理解,培养学生的思维批判性.)
问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)
(四)应用、巩固和反思
例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.
解(略,教材87页)
例题拓展:当P点在圆上或圆内是否还有AB=CD呢?
(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)
练习:(教材88页练习)
1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:.
(1)如果AB=CD,那么______,______,______;
(2)如果OE=OG,那么______,______,______;
(3)如果=,那么______,______,______;
(4)如果∠AOB=∠COD,那么______,______,______.
(目的:巩固基础知识)
2、(教材88页练习3题,略.定理的简单应用)
(五)小结:学生自己归纳,老师指导.
知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.
能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.
(六)作业:教材P99中1(1)、2、3.
第二课时圆心角、弧、弦、弦心距之间的关系(二)
教学目标:
(1)理解1°弧的概念,能熟练地应用本节知识进行有关计算;
(2)进一步培养学生自学能力,应用能力和计算能力;
(3)通过例题向学生渗透数形结合能力.
教学重点、难点:
重点:圆心角、弧、弦、弦心距之间的相等关系的应用.
难点:理解1°弧的概念.
教学活动设计:
(一)阅读理解
学生独立阅读P89中,1°的弧的概念,使学生从感性的认识到理性的认识.
理解:
(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.
(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.
(3)圆心角的度数和它们对的弧的度数相等.
(二)概念巩固
1、判断题:
(1)等弧的度数相等();
(2)圆心角相等所对应的弧相等();
(3)两条弧的长度相等,则这两条弧所对应的圆心角相等()
2、解得题:
(1)度数是5°的圆心角所对的弧的度数是多少?为什么?
(2)5°的圆心角对着多少度的弧?5°的弧对着多少度的圆心角?
(3)n°的圆心角对着多少度的弧?n°的弧对着多少度的圆心角?
(三)疑难解得
对于①弧相等;②弧的长度相等;③弧的度数相等;④圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.
特别是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.
(四)应用、归纳、反思
例1、如图,在⊙O中,弦AB所对的劣弧为圆的,圆的半径为2cm,求AB的长.
学生自主分析,写出解题过程,交流指导.
解:(参看教材P89)
注意:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要特别关注和指导.
反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.
例2、如图,已知AB和CD是⊙O的两条直径,弦CE∥AB,=40°,求∠BOD的度数.
题目从“分析——解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.
(解答参考教材P90)
题目拓展:
1、已知:如上图,已知AB和CD是⊙O的两条直径,弦CE∥AB,求证:=.
2、已知:如上图,已知AB和CD是⊙O的两条直径,弦=,求证:CE∥AB.
目的:是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.
(五)小节(略)
(六)作业:教材P100中4、5题.
探究活动
我们已经研究过:已知点O是∠BPD的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,则AB=CD;现在,若⊙O与∠EPF的两边所在的直线分别交于点A、B和C、D,请你结合图形,添加一个适当的条件,使OP为∠BPD的平分线.
解(略)
①AB=CD;
②=.(等等)