你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >弦切角的教学方案
  • 弦切角的教学方案

    发表时间:2022-02-05

    【www.jk251.com - 弦切角】

    充分准备一份教案是一名教师的职责所在,教案是教师安排教学的依据,好的教案能更好地提高初中生的学习能力,初中教案该怎么写?下面是小编特地为大家整理的“弦切角的教学方案”。

    教学目标1、使学生熟练掌握弦切角定理及其应用.2、通过对具体习题的解答培养学生的分析问题能力;3、培养学生的综合运用能力.教学重点:使学生较熟练运用弦切角定理证明有关几何问题.教学难点:学生不能准确地找到解题思路将弦切角定理及其推论灵活运用.教学过程:一、新课引入:上一节我们已经学习了弦切角定理及其推论,这一节我们来学习将定理和推论熟练应用于解题之中.弦切角也是圆的一个重要的角,它同圆心角、圆周角相互关联,是证明或计算几何综合性习题一个重要途径.当我们从题目中看到圆的切线时,不光想到切线的性质、切线长,还要想到弦切角,同学们将从下面的习题中感悟到这一点.二、新课讲解:练习一,如图7-75,ac是⊙o的弦,ad是切线,cb⊥ad于b,cb交⊙o于e.如果ea平分∠bac,那么∠c=______.(答案30°)

    练习二,p是直径ab的延长线上一点,pc为⊙o的切线,c为切点,若∠pcb=25°,则∠p=______(答案40°)练习三,bc是⊙o的弦,p是bc延长线上一点,pa与⊙o相切于点a,∠abc=25°,∠acb=80°,求∠p的度数.(答案63°)练习四,弦切角的弦分圆成两部分,其中一部分比另一部分大44°,求这个弦切角的度数.(答案79°、101°.为什么是两种?教师指导学生弄清楚.)练习五,ab是⊙o的弦,pa切⊙o于a,c为⊙o上除a、b外任意一点,若∠pab=42°,则∠acb的度数为______.p.124例2已知:如图7-76,⊙o和⊙o′都经过a、b两点,ac是⊙o′的切线,交⊙o于点c,ad是⊙o的切线⊙o′于点d求证:ab2=bc·bd.

    学生在教师的指导下完成分析过程.△abd∽△abc即可,而题目中分别给出两圆切线,可产生弦切角定理,从而命题得证.注意,例题证明过程板书时,应参照教材改成推出法.练习六,p.124练习1.如图7-77,ab是⊙的弦,cd是经过⊙o上一点m的切线,求证:(1)ab∥cd时,am=mb.(2)am=mb时,ab∥cd.

    提醒学生注意到,本题目的两个结论,正好是互逆,在处理这类问题时,只要把其中一个问题分析透彻即可.练习七,p.124中2.在△abc中,∠a的平分线ad交bc于d,⊙o过点a,且和bc切于d,和ab、ac分别交于e、f.求证:ef∥bc.教师指导学生分析,要证ef∥bc,如果从角相等来考虑,同位角比较困难,可连结de(或df)证内错角相等.弦切角定理∠1=∠3,圆周角定理推论∠2=∠4,而∠3=∠4,从而∠1=∠2,命题得证.想一想,本题还可以怎样证?你能就这个图形,编绘出另外一道题吗?1.另外一个证法是连结od,运用垂径定理和切线性质定理来证.2.另编题:如图7-78,bc切△aef的外接圆o于d,且ef∥bc.求证:ad平分∠bac.

    证明由学生独立完成.教师着重于启发,引导学生的思维.三、课堂小结:教师指导学生总结出本课主要内容:1.弦切角的概念:反映了两个方面的问题;(1)角的顶点也就是切点.(2)角的两边中一边与圆相交,一边与圆相切,要准确判断圆的切线与割线间的角不是弦切角,因为它的项点不在圆上.2.弦切角定理:这个重要的定理确定了弦切角的度量,即弦切角等于它所夹的弧所对的圆周角.3.在证明中使用弦切角定理的前提是必须出现圆的切线,务必使学生明白这一点,提醒学生在今后的证明中,如果需要,可以过圆上某一点作圆的切线,以造成弦切角定理的使用前提.四、布置作业本节作业均为课外补充作业,用题签的形式发给学生,详见习题参考答案.

    jk251.cOm扩展阅读

    弦切角


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及直线形角的性质构成了完美的角的体系,属于工具知识之一.

    难点:定理的证明.因为在证明过程中包含了由“一般到特殊”的数学思想方法和完全归纳法的数学思想,虽然在圆周角定理的证明中应用过,但对学生来说是生疏的,因此它是教学中的难点.

    2、教学建议

    (1)教师在教学过程中,主要是设置学习情境,组织或引导学生发现问题、分析问题、研究问题和归纳结论,应用知识培养学生的数学能力;在学生主体参与的学习过程中,让学生学会学习,并获得新知识;

    (2)学习时应注意:(Ⅰ)的识别由三要素构成:①顶点为切点,②一边为切线,③一边为过切点的弦;(Ⅱ)在使用定理时,首先要根据图形准确找到和它们所夹弧上的圆周角;(Ⅲ)要注意定理的证明,体现了从特殊到一般的证明思路.

    教学目标:

    1、理解的概念;

    2、掌握定理及推论,并会运用它们解决有关问题;

    3、进一步理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.

    教学重点:定理及其应用是重点.

    教学难点:定理的证明是难点.

    教学活动设计:

    (一)创设情境,以旧探新

    1、复习:什么样的角是圆周角?

    2、的概念:

    电脑显示:圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A旋转至与圆相切时,得∠BAE.

    引导学生共同观察、分析∠BAE的特点:

    (1)顶点在圆周上;(2)一边与圆相交;(3)一边与圆相切.

    的定义:

    顶点在圆上,一边和圆相交,另一边和圆相切的角叫做。

    3、用反例图形剖析定义,揭示概念本质属性:

    判断下列各图形中的角是不是,并说明理由:

    以下各图中的角都不是.

    图(1)中,缺少“顶点在圆上”的条件;

    图(2)中,缺少“一边和圆相交”的条件;

    图(3)中,缺少“一边和圆相切”的条件;

    图(4)中,缺少“顶点在圆上”和“一边和圆相切”两个条件.

    通过以上分析,使全体学生明确:定义中的三个条件缺一不可。

    (二)观察、猜想

    1、观察:(电脑动画,使C点变动)

    观察∠P与∠BAC的关系.

    2、猜想:∠P=∠BAC

    (三)类比联想、论证

    1、首先让学生回忆联想:

    (1)圆周角定理的证明采用了什么方法?

    (2)既然可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢?

    2、分类:教师引导学生观察图形,当固定切线,让过切点的弦运动,可发现一个圆的有无数个.

    如图.由此发现,可分为三类:

    (1)圆心在角的外部;

    (2)圆心在角的一边上;

    (3)圆心在角的内部.

    3、迁移圆周角定理的证明方法

    先证明了特殊情况,在考虑圆心在的外部和内部两种情况.

    组织学生讨论:怎样将一般情况的证明转化为特殊情况.

    如图(1),圆心O在∠CAB外,作⊙O的直径AQ,连结PQ,则∠BAC=∠BAQ-∠l=∠APQ-∠2=∠APC.

    如图(2),圆心O在∠CAB内,作⊙O的直径AQ.连结PQ,则∠BAC=∠QAB十∠1=∠QPA十∠2=∠APC,

    (在此基础上,给出证明,写出完整的证明过程)

    回顾证明方法:将情形图都化归至情形图1,利用角的合成、对三种情况进行完全归纳、从而证明了上述猜想是正确的,得:

    定理:等于它所夹的弧对的圆周角.

    4.深化结论.

    练习1直线AB和圆相切于点P,PC,PD为弦,指出图中所有的以及它们所夹的弧.

    练习2如图,DE切⊙O于A,AB,AC是⊙O的弦,若=,那么∠DAB和∠EAC是否相等?为什么?

    分析:由于和分别是两个∠OAB和∠EAC所夹的弧.而=.连结B,C,易证∠B=∠C.于是得到∠DAB=∠EAC.

    由此得出:

    推论:若两所夹的弧相等,则这两个也相等.

    (四)应用

    例1如图,已知AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,AD⊥CE,垂足为D

    求证:AC平分∠BAD.

    思路一:要证∠BAC=∠CAD,可证这两角所在的直角三角形相似,于是连结BC,得Rt△ACB,只需证∠ACD=∠B.

    证明:(学生板书)

    组织学生积极思考.可否用前边学过的知识证明此题?由学生回答,教师小结.

    思路二,连结OC,由切线性质,可得OC∥AD,于是有∠l=∠3,又由于∠1=∠2,可证得结论。

    思路三,过C作CF⊥AB,交⊙O于P,连结AF.由垂径定理可知∠1=∠3,又根据定理有∠2=∠1,于是∠2=∠3,进而可证明结论成立.

    练习题

    1、如图,AB为⊙O的直径,直线EF切⊙O于C,若∠BAC=56°,则∠ECA=______度.

    2、AB切⊙O于A点,圆周被AC所分成的优弧与劣弧之比为3:1,则夹劣弧的∠BAC=________

    3、如图,经过⊙O上的点T的切线和弦AB的延长线相交于点C.

    求证:∠ATC=∠TBC.

    (此题为课本的练习题,证明方法较多,组织学生讨论,归纳证法.)

    (五)归纳小结

    教师组织学生归纳:

    (1)这节课我们主要学习的知识;

    (2)在学习过程中应用哪些重要的数学思想方法?

    (六)作业:教材P13l习题7.4A组l(2),5,6,7题.

    探究活动

    一个角的顶点在圆上,它的度数等于它所夹的弧对的圆周角的度数,试探讨该角是否圆周角?若不是,请举出反例;若是圆周角,请给出证明.

    提示:是圆周角(它是定理的逆命题).分三种情况证明(证明略).

    数学教案-弦切角


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:弦切角定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及直线形角的性质构成了完美的角的体系,属于工具知识之一.

    难点:弦切角定理的证明.因为在证明过程中包含了由“一般到特殊”的数学思想方法和完全归纳法的数学思想,虽然在圆周角定理的证明中应用过,但对学生来说是生疏的,因此它是教学中的难点.

    2、教学建议

    (1)教师在教学过程中,主要是设置学习情境,组织或引导学生发现问题、分析问题、研究问题和归纳结论,应用知识培养学生的数学能力;在学生主体参与的学习过程中,让学生学会学习,并获得新知识;

    (2)学习时应注意:(Ⅰ)弦切角的识别由三要素构成:①顶点为切点,②一边为切线,③一边为过切点的弦;(Ⅱ)在使用弦切角定理时,首先要根据图形准确找到弦切角和它们所夹弧上的圆周角;(Ⅲ)要注意弦切角定理的证明,体现了从特殊到一般的证明思路.

    教学目标:

    1、理解弦切角的概念;

    2、掌握弦切角定理及推论,并会运用它们解决有关问题;

    3、进一步理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.

    教学重点:弦切角定理及其应用是重点.

    教学难点:弦切角定理的证明是难点.

    教学活动设计:

    (一)创设情境,以旧探新

    1、复习:什么样的角是圆周角?

    2、弦切角的概念:

    电脑显示:圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A旋转至与圆相切时,得∠BAE.

    引导学生共同观察、分析∠BAE的特点:

    (1)顶点在圆周上;(2)一边与圆相交;(3)一边与圆相切.

    弦切角的定义:

    顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

    3、用反例图形剖析定义,揭示概念本质属性:

    判断下列各图形中的角是不是弦切角,并说明理由:

    以下各图中的角都不是弦切角.

    图(1)中,缺少“顶点在圆上”的条件;

    图(2)中,缺少“一边和圆相交”的条件;

    图(3)中,缺少“一边和圆相切”的条件;

    图(4)中,缺少“顶点在圆上”和“一边和圆相切”两个条件.

    通过以上分析,使全体学生明确:弦切角定义中的三个条件缺一不可。

    (二)观察、猜想

    1、观察:(电脑动画,使C点变动)

    观察∠P与∠BAC的关系.

    2、猜想:∠P=∠BAC

    (三)类比联想、论证

    1、首先让学生回忆联想:

    (1)圆周角定理的证明采用了什么方法?

    (2)既然弦切角可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢?

    2、分类:教师引导学生观察图形,当固定切线,让过切点的弦运动,可发现一个圆的弦切角有无数个.

    如图.由此发现,弦切角可分为三类:

    (1)圆心在角的外部;

    (2)圆心在角的一边上;

    (3)圆心在角的内部.

    3、迁移圆周角定理的证明方法

    先证明了特殊情况,在考虑圆心在弦切角的外部和内部两种情况.

    组织学生讨论:怎样将一般情况的证明转化为特殊情况.

    如图(1),圆心O在∠CAB外,作⊙O的直径AQ,连结PQ,则∠BAC=∠BAQ-∠l=∠APQ-∠2=∠APC.

    如图(2),圆心O在∠CAB内,作⊙O的直径AQ.连结PQ,则∠BAC=∠QAB十∠1=∠QPA十∠2=∠APC,

    (在此基础上,给出证明,写出完整的证明过程)

    回顾证明方法:将情形图都化归至情形图1,利用角的合成、对三种情况进行完全归纳、从而证明了上述猜想是正确的,得:

    弦切角定理:弦切角等于它所夹的弧对的圆周角.

    4.深化结论.

    练习1直线AB和圆相切于点P,PC,PD为弦,指出图中所有的弦切角以及它们所夹的弧.

    练习2如图,DE切⊙O于A,AB,AC是⊙O的弦,若=,那么∠DAB和∠EAC是否相等?为什么?

    分析:由于和分别是两个弦切角∠OAB和∠EAC所夹的弧.而=.连结B,C,易证∠B=∠C.于是得到∠DAB=∠EAC.

    由此得出:

    推论:若两弦切角所夹的弧相等,则这两个弦切角也相等.

    (四)应用

    例1如图,已知AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,AD⊥CE,垂足为D

    求证:AC平分∠BAD.

    思路一:要证∠BAC=∠CAD,可证这两角所在的直角三角形相似,于是连结BC,得Rt△ACB,只需证∠ACD=∠B.

    证明:(学生板书)

    组织学生积极思考.可否用前边学过的知识证明此题?由学生回答,教师小结.

    思路二,连结OC,由切线性质,可得OC∥AD,于是有∠l=∠3,又由于∠1=∠2,可证得结论。

    思路三,过C作CF⊥AB,交⊙O于P,连结AF.由垂径定理可知∠1=∠3,又根据弦切角定理有∠2=∠1,于是∠2=∠3,进而可证明结论成立.

    练习题

    1、如图,AB为⊙O的直径,直线EF切⊙O于C,若∠BAC=56°,则∠ECA=______度.

    2、AB切⊙O于A点,圆周被AC所分成的优弧与劣弧之比为3:1,则夹劣弧的弦切角∠BAC=________

    3、如图,经过⊙O上的点T的切线和弦AB的延长线相交于点C.

    求证:∠ATC=∠TBC.

    (此题为课本的练习题,证明方法较多,组织学生讨论,归纳证法.)

    (五)归纳小结

    教师组织学生归纳:

    (1)这节课我们主要学习的知识;

    (2)在学习过程中应用哪些重要的数学思想方法?

    (六)作业:教材P13l习题7.4A组l(2),5,6,7题.

    探究活动

    一个角的顶点在圆上,它的度数等于它所夹的弧对的圆周角的度数,试探讨该角是否圆周角?若不是,请举出反例;若是圆周角,请给出证明.

    提示:是圆周角(它是弦切角定理的逆命题).分三种情况证明(证明略).

    弦切角初中教案精选


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及直线形角的性质构成了完美的角的体系,属于工具知识之一.

    难点:定理的证明.因为在证明过程中包含了由“一般到特殊”的数学思想方法和完全归纳法的数学思想,虽然在圆周角定理的证明中应用过,但对学生来说是生疏的,因此它是教学中的难点.

    2、教学建议

    (1)教师在教学过程中,主要是设置学习情境,组织或引导学生发现问题、分析问题、研究问题和归纳结论,应用知识培养学生的数学能力;在学生主体参与的学习过程中,让学生学会学习,并获得新知识;

    (2)学习时应注意:(Ⅰ)的识别由三要素构成:①顶点为切点,②一边为切线,③一边为过切点的弦;(Ⅱ)在使用定理时,首先要根据图形准确找到和它们所夹弧上的圆周角;(Ⅲ)要注意定理的证明,体现了从特殊到一般的证明思路.

    教学目标:

    1、理解的概念;

    2、掌握定理及推论,并会运用它们解决有关问题;

    3、进一步理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.

    教学重点:定理及其应用是重点.

    教学难点:定理的证明是难点.

    教学活动设计:

    (一)创设情境,以旧探新

    1、复习:什么样的角是圆周角?

    2、的概念:

    电脑显示:圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A旋转至与圆相切时,得∠BAE.

    引导学生共同观察、分析∠BAE的特点:

    (1)顶点在圆周上;(2)一边与圆相交;(3)一边与圆相切.

    的定义:

    顶点在圆上,一边和圆相交,另一边和圆相切的角叫做。

    3、用反例图形剖析定义,揭示概念本质属性:

    判断下列各图形中的角是不是,并说明理由:

    以下各图中的角都不是.

    图(1)中,缺少“顶点在圆上”的条件;

    图(2)中,缺少“一边和圆相交”的条件;

    图(3)中,缺少“一边和圆相切”的条件;

    图(4)中,缺少“顶点在圆上”和“一边和圆相切”两个条件.

    通过以上分析,使全体学生明确:定义中的三个条件缺一不可。

    (二)观察、猜想

    1、观察:(电脑动画,使C点变动)

    观察∠P与∠BAC的关系.

    2、猜想:∠P=∠BAC

    (三)类比联想、论证

    1、首先让学生回忆联想:

    (1)圆周角定理的证明采用了什么方法?

    (2)既然可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢?

    2、分类:教师引导学生观察图形,当固定切线,让过切点的弦运动,可发现一个圆的有无数个.

    如图.由此发现,可分为三类:

    (1)圆心在角的外部;

    (2)圆心在角的一边上;

    (3)圆心在角的内部.

    3、迁移圆周角定理的证明方法

    先证明了特殊情况,在考虑圆心在的外部和内部两种情况.

    组织学生讨论:怎样将一般情况的证明转化为特殊情况.

    如图(1),圆心O在∠CAB外,作⊙O的直径AQ,连结PQ,则∠BAC=∠BAQ-∠l=∠APQ-∠2=∠APC.

    如图(2),圆心O在∠CAB内,作⊙O的直径AQ.连结PQ,则∠BAC=∠QAB十∠1=∠QPA十∠2=∠APC,

    (在此基础上,给出证明,写出完整的证明过程)

    回顾证明方法:将情形图都化归至情形图1,利用角的合成、对三种情况进行完全归纳、从而证明了上述猜想是正确的,得:

    定理:等于它所夹的弧对的圆周角.

    第12页

    的教学方案


    2.1比0小的数(一)教学设计

    江苏教育学院附属高级中学崔宁宁

    【设计思路】本节课是第二章的起始课,也是学生进入初中的第一节概念课.因此,为了让学生感受数学就处处存在于我们生活周围,本节课以现实生活为素材,从学生的生活经验、经历和已有的知识出发,创设恰当的情境:气温的表示和一个小游戏的结果的表示,让学生意识到他们小学里所学的数已经不够用了,意识到引入其他新数的必要性.紧接着展现现实生活中常见的情境图片引进负数.

    本节课的第二个处理点是将“有理数的分类”提前,而将“正、负数可以表示相反意义的量”放置第二课时,因为可以说“正、负数可以表示相反意义的量”是对正、负数的一个应用,这样在第二课时不仅可以对有理数进行复习,而且还对有理数进行应用,让学生感受学数学的目的是为了用数学.

    本节课的第三点就是对有理数进行分类.这点主要是用指出有理数所包含的全部对象的方法给出有理数的定义及分类,而有理数的分类实际上是有理数的定义的另一种表达形式.这里让学生初步感受分类思想,也开始逐渐地培养学生的分类思想.

    【教学过程】

    一、教学目标

    1.根据已有的知识经验,借助生活中的实例认识负数,理解正数、负数的不同意义,体会负数引入的必要性;

    2.理解有理数的意义,并会将有理数分类;

    3.初步培养学生的分类思想.

    二、教学重点、难点

    重点:1.辨别正数与负数,理解负数的意义;

    2.有理数的分类.

    难点:1.负数概念的建立;

    2.有理数的两种分类方法.

    三、教学方法及手段:讨论法、讲授法

    四、教学工具:多媒体课件

    五、教学过程

    1、创设情境引入新课

    首先引导学生回忆:小学学过哪些数?是不是我们生活中遇到的任何量都可以用它们来表示呢?(可先让学生举例回答)

    由此创设下列情境:

    情境一:据气象台播报,2005年1月12日,南京的最高气温为零上9度,最低气温为零下3度,问:若将零上9度记为9℃,零下3度能记为3℃吗?

    情境二:某班举行数学竞赛评分标准是:答对一题加10分,答错一题扣10分,不回答得0分;四个代表队答题情况如下表:

    下载完整版:2.1比0小的数(一)教学设计(如果不能下载,请右击用迅雷下载)

    上一篇:2.1比零小的数(2)

    下一篇:没有了

    §.的教学方案


    §7.2转盘游戏

    教学目标:

    1.在试验中进一步体会不确定事件的特点;

    2.通过试验总结不确定事件发生的等可能性;

    3.通过转盘游戏进一步突出事件发生的可能性是有大小的,同时复习一些基本统计量的意义、运算和有理数的加减运算;

    4.能列举简单事件所有可能发生的结果。

    教学重点:1.不确定事件的特点和不确定事件发生的等可能性;

    2.列举简单事件所有发生的可能结果。

    教学难点:列举简单事件所有发生的可能结果。

    教学过程:

    一、复习引入:

    指针指在什么颜色区域的可能性大?

    条件:任写6个-10至10之间的数.

    二、课堂活动:

    1.游戏规则:

    (1)任意抽一组数,算出这组数的平均数;

    (2)自由转动转盘,当转盘停止转动后,指针落在某个区域;

    (3)根据转动和刚才的计算得到结果.

    2.议一议:

    (1)这个转盘转到哪部分的可能性大?

    (2)在做上述游戏的过程中,你如何调整卡片上的数据的?

    (3)将各小组活动进行汇总,”平均数增大1”的次数占次数的百分比的多少?”平均数减少1”的呢?

    (4)如果将这个实验继续做下去,卡片上所有数的平均数会增大还是减少?

    3.试一试:

    请设计一个转盘,使得它停止转动时,指针落在绿色区域的可能性比落在白色区域的大.小明设计的转盘有三种颜色,你觉得可能吗?

    4.练一练:

    下面是两个可以自由转动的转盘,分别转动这两个转盘,你认为转动哪种颜色的可能性最大?说明理由.

    5.小结:

    生活中有哪些现象是一定发生的、很可能发生的、可能发生的、不太可能发生的、不可能发生的?

    6.作业:

    1.见作业本.

    2.书面设计一个对双方都公平的游戏.

    【弦切角的教学方案】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...