你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >九年级切线的判定导学案
  • 九年级切线的判定导学案

    发表时间:2022-02-05

    【www.jk251.com - 七年级语文导学案】

    大家对教案都很熟悉了吧,我们可以通过教案来进行更好的教学,初中老师经常会为写教案感到苦恼,优秀的初中教案是什么样子的?下面是小编特地为大家整理的“九年级切线的判定导学案”。

    学习目标:1、理解切线的判定定理并会运用定理解决简单的问题.

    2、培养学生观察、分析、归纳等解决数学问题的能力;

    学习重、难点:定理的理解及实际运用

    学习过程:

    一、创设情境引入新课

    1、你知道下雨天当你快速转动雨伞时飞出的水珠,在砂轮上打磨工件时飞出的火星,是沿什么方向飞出的吗?

    2、温故知新

    (1)直线与圆的位置关系有种,分别是:

    (2)判断直线与圆的位置关系的方法:

    (3)你有哪些判断直线与圆相切的方法?

    二、独立自学发现新知

    自学教材97页,并完成下列问题中的“做一做”、“想一想”。

    三、合作互学探索新知

    做一做已知圆⊙o和⊙o上一点a,你能不能过点a作出圆的切线?如何作?有什么依据?你有什么新的发现?

    想一想(1)这条直线必须同时满足个条件:,才是圆的切线。

    (2)只满足一个条件可以吗?举例说明。

    (3)用符号语言描述为:

    考一考(1)判断下列说法是否正确

    与圆有公共点的直线是圆的切线.()

    经过圆的半径外端的直线是圆的切线.()

    垂直于圆的半径的直线是圆的切线.()

    经过半径的端点且与半径垂直的直线是圆的切线.()

    到圆心距离等于半径的直线是圆的切线.()

    (2)回答创设情境中的问题。

    理一理判断直线与圆相切有哪些方法?

    四、精讲导学理解新知

    例如图,直线ab经过⊙o上的点c,并且oa=ob,ca=cb,求证:直线ab是⊙o的切线。

    变式如图,已知oa=ob,∠a=300,以点o为圆心、oa为半径作⊙o。试判断直线ab是⊙o的位置关系,并说明理由。

    想一想例题与变式有那些共同点和不同点?(从已知条件和证明方法比较)

    理一理证明直线是圆的切线时常添加辅助线有:

    五、展示竞学深化新知

    如图,四边形abcd内接于⊙o,bd是⊙o的直径,ae⊥cd,垂足为e,da平分∠bde。

    平分∠bde,

    (1)判断ae与⊙o的位置关系,并证明你的结论;

    (2)若∠dbc=30°,de=1cm,求bd的长。

    六、小结评学升华新知

    一个定理

    两种常见辅助线

    三种方法

    七、检测固学运用新知

    1、如图:ab为⊙o的直径,圆周角∠bac=50°,当∠acd=时,cd为⊙o的切线.

    2、在rt△abc中,∠b=90°,∠bac的平分线交bc于d,以d为圆心,db长为半径作⊙d。试说明:ac是⊙d的切线.

    3、已知:如图,在中,,以为直径的⊙o交于点,过点作于点.求证:是⊙o的切线。

    jk251.coM小编推荐

    切线的判定性质初中教案精选


    (一)

    教学目标:

    1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;

    2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;

    3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.

    教学重点:切线的判定定理和切线判定的方法;

    教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.

    教学过程设计

    (一)复习、发现问题

    1.直线与圆的三种位置关系

    在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?

    2、观察、提出问题、分析发现(教师引导)

    图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?

    如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.

    发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.

    (二)切线的判定定理:

    1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

    2、对定理的理解:

    引导学生理解:①经过半径外端;②垂直于这条半径.

    请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.

    图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.

    从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.

    (三)切线的判定方法

    教师组织学生归纳.切线的判定方法有三种:

    ①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.

    (四)应用定理,强化训练'

    例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

    求证:直线AB是⊙O的切线.

    分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。

    证明:连结0C

    ∵0A=0B,CA=CB,”

    ∴0C是等腰三角形0AB底边AB上的中线.

    ∴AB⊥OC.

    直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线.

    练习1判断下列命题是否正确.

    (1)经过半径外端的直线是圆的切线.

    (2)垂直于半径的直线是圆的切线.

    (3)过直径的外端并且垂直于这条直径的直线是圆的切线.

    (4)和圆有一个公共点的直线是圆的切线.

    (5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.

    采取学生抢答的形式进行,并要求说明理由,

    练习P106,1、2

    目的:使学生初步会应用切线的判定定理,对定理加深理解)

    (五)小结

    1、知识:切线的判定定理.着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可.

    2、方法:判定一条直线是圆的切线的三种方法:

    (1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。

    (2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.

    (3)根据切线的判定定理来判定.

    其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.

    3、能力:初步会应用切线的判定定理.

    (六)作业P115中2、4、5;P117中B组1.

    (二)

    教学目标:

    1、使学生理解切线的性质定理及推论;

    2、通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力;

    教学重点:切线的性质定理和推论1、推论2.

    教学难点:利用“反证法”来证明切线的性质定理.

    教学设计:

    (一)基本性质

    1、观察:(组织学生,使学生从感性认识到理性认识)

    2、归纳:(引导学生完成)

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;

    猜想:圆的切线垂直于经过切点的半径.

    引导学生应用“反证法”证明.分三步:

    (1)假设切线AT不垂直于过切点的半径OA,

    (2)同时作一条AT的垂线OM.通过证明得到矛盾,OM<OA这条半径.则有直线和圆的位置关系中的数量关系,得AT和⊙O相交与题设相矛盾.

    (3)承认所要的结论AT⊥AO.

    切线的性质定理:圆的切线垂直于经过切点的半径.

    指出:定理中题设和结论中涉及到的三个要点:切线、切点、垂直.

    引导学生发现:

    推论1:经过圆心且垂直于切线的直线必经过切点.

    推论2:经过切点且垂于切线的直线必经过圆心.

    引导学生分析性质定理及两个推论的条件和结论问的关系,总结出如下结论:

    如果一条直线具备下列三个条件中的任意两个,就可推出第三个.

    (1)垂直于切线;

    (2)过切点;

    (3)过圆心.

    (二)归纳切线的性质

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

    (3)切线垂直于过切点的半径;(切线的性质定理)

    (4)经过圆心垂直于切线的直线必过切点;(推论1)

    (5)经过切点垂直于切线的直线必过圆心.(推论2)

    (三)应用举例,强化训练.

    例1、如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

    求证:AC平分∠DAB.

    引导学生分析:条件CD是⊙O的切线,可得什么结论;由AD⊥CD,又可得什么.

    证明:连结OC.

    ∴AC平分∠DAB.

    例2、求证:如果圆的两条切线互相平行,则连结两个切点的线段是直径。

    已知:AB、CD是⊙O的两条切线,E、F为切点,且AB∥CD

    求证:连结E、F的线段是直径。

    证明:连结EO并延长

    ∵AB切⊙O于E,∴OE⊥AB,

    ∵AB∥CD,∴OE⊥CD.

    ∵CD是⊙O切线,F为切点,∴OE必过切点F

    ∴EF为⊙O直径

    强化训练:P109,1

    3、求证:经过直径两端点的切线互相平行。

    已知:AB为⊙O直径,MN、CD为⊙O切线,切点为A、B

    求证:MN∥CD

    证明:∵MN切⊙O于A,AB为⊙O直径

    ∴MN⊥AB

    ∵CD切⊙O于B,B为半径外端

    ∴CD⊥AB,

    ∴MN∥CD.

    (四)小结

    1、知识:切线的性质:

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

    (3)切线垂直于过切点的半径;(切线的性质定理)

    (4)经过圆心垂直于切线的直线必过切点;(推论1)

    (5)经过切点垂直于切线的直线必过圆心.(推论2)

    2、能力和方法:

    凡是题目中给出切线的切点,往往“连结”过切点的半径.从而运用切线的性质定理,产生垂直的位置关系.

    (五)作业教材P109练习2;教材P116中7.

    (三)

    教学目标:

    1、使学生学能灵活运用切线的判定方法和切线的性质证明问题;

    2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律;

    3、通过对切线的综合型例题分析和论证,激发学生的思维.

    教学重点:对切线的判定方法及其性质的准确、熟炼、灵活地运用.

    教学难点:综合型例题分析和论证的思维过程.

    教学设计:

    (一)复习与归纳

    1、切线的判定

    切线的判定方法有三种:

    ①直线与圆有唯一公共点;

    ②直线到圆心的距离等于该圆的半径;

    ③切线的判定定理.即经过半径外端并且垂直于这条半径的直线是圆的切线.

    2、切线的性质:

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

    (3)切线垂直于过切点的半径;(切线的性质定理)

    (4)经过圆心垂直于切线的直线必过切点;(推论1)

    (5)经过切点垂直于切线的直线必过圆心.(推论2)

    (二)灵活应用

    例1(P108例3)、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.

    证明:连结OD.

    ∵OA=OD,∴∠1=∠2,

    ∵AD∥OC,∴∠1=∠3、∠2=∠4

    ∴∠3=∠4

    在△OBC和△ODC中,

    OB=OD,∠3=∠4,OC=OC,

    ∴△OBC≌△ODC,∴∠OBC=∠ODC.

    ∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°.

    ∴DC是⊙O的切线.

    例2(P110例4)、如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.

    证明:连结OE,过O作OF⊥CD,垂足为F.

    ∵AB与小圆O切于点点E,∴OE⊥AB.

    又∵AB=CD,

    ∴OF=OE,又OF⊥CD,

    ∴CD与小圆O相切.

    学生归纳:(1)证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.);

    (2)“连结”过切点的半径,产生垂直的位置关系.

    例3、已知:AB是半⊙O直径,CD⊥AB于D,EC是切线,E为切点

    求证:CE=CF

    证明:连结OE

    ∵BE=BO∴∠3=∠B

    ∵CE切⊙O于E

    ∴OE⊥CE∠2+∠3=90°

    ∵CD⊥AB∴∠4+∠B=90°

    ∴∠2=∠4

    ∵∠1=∠4∴∠1=∠2

    ∴CE=CF

    以上例题让学生自主分析、论证,教师指导书写规范,观察学生推理的严密性和学生共同存在的问题,及时解决.

    巩固练习:P111练习1、2.

    (三)小结:

    1、知识:(指导学生归纳)切线的判定方法和切线的性质

    2、能力:①灵活运用切线的判定方法和切线的性质证明问题;②作辅助线的能力和技巧.

    (四)作业:教材P115,1(1)、2、3.

    探究活动

    问题:(北京西城区,2002)已知:AB为⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,设切点为C.

    (1)当点P在AB延长线上的位置如图1所示时,连结AC,作∠APC的平分线,交AC于点D,请你测量出∠CDP的度数;

    (2)当点P在AB延长线上的位置如图2和图3所示时,连结AC,请你分别在这两个图中用尺规作∠APC的平分线(不写做法,保留作固痕迹),设此角平分线交AC于点D,然后在这两个图中分别测量出∠CDP的度数;

    猜想:∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?请对称的猜想加以证明.

    解:(1)测量结果:

    (2)图2中的测量结果:

    图3中的测量结果:

    猜想:

    证明:

    解:(1)测量结果:∠CDP=45°.

    (2)图2中的测量结果:∠CDP=45°.

    图3中的测量结果:∠CDP=45°.

    猜想:∠CDP=45°,不随点P在AB延长线上的位置的变化而变化.

    证明:连结OC.

    ∵PC切⊙O于点C,

    ∴PC⊥OC,

    ∴∠1+∠CPO=90°,

    ∵PC平分∠APC,

    ∴∠2=1/2∠CPO.

    ∵OA=OC

    ∴∠A=∠3.

    ∴∠1=∠A+∠3,

    ∴∠A=1/2∠1.

    ∴∠CDP=∠A+∠2=1/2(∠1+∠CPO)=45°.

    ∴猜想正确.

    七年级语文导学案


    课题:幼时记趣

    课标要求:

    1.了解作者童年生活的乐趣,这种乐趣体现了作者的纯真的童心和视小为大、想象奇特的童趣。

    2.认识观察与想象、联想的关系.

    3.要求学生借助注释和词典及老师的适当点拨,读懂这篇文言文。

    教材简析:

    这是作者追记童年生活的一篇极有情趣的散文.文章围绕“记趣”这一中心,选取三个典型事例进行记叙.

    教学建议:语气

    1.本文是学生初中阶段语文课上学的第一篇文言文,应引导学生对照注释,查阅有关工具书,读准字音,初步读懂文章,并指导学生正确朗读课文,做到停顿正确,不读破句子,注意语调、语气.

    2.要求学生重点识记文中常见的文言实词和虚词的意义和用法,如文中的明察秋毫、故、私、拟、强、怡然称快、神游、庞然大物、拔山倒树、方、之、以、或、其、盖等。

    3.注意讲清课文的省略句:如“群鹤舞(于)空”“使(之)与台齐”“驱之(于)别院”等;固定句式:“作……观”“以……为……”“……为所……”等.

    4.要求学生用现代汉语正确翻译全文。

    5.在读懂文章的基础上,要求学生对文章的内容进行概括.文章写了什么样的童年生活?“物外之趣”有哪几件?

    6.补充一篇课外文言文。

    7.研究“物外之趣”

    怎么会产生“物外之趣”的?

    “物外之趣”反映了作者什么样的童心、童趣?

    说说你童年的一些趣事,以此来拓展课文内容,加强口头表达训练。

    课堂展示:

    1.预习一测1.2

    2.试总结文中“之”“其”虚词的用法及含义.

    3.课内一练2.3(见79页)

    4.用现代汉语说出下列句子的意思.(见79页)

    5.“观文如鹤”这种现象能存在吗?应怎样解释这种现象呢?(从而引出“心之所向”,观察、想象、联想的关系)

    6.在文中找出你认为有趣的地方,并说说“趣”在哪里?本文写了几件趣事?(并由此导出文章结构形式)

    7.发掘潜力(见80页)

    8.童年时美好的,冰心老人赞其为“真中的梦,梦中的真,是回忆时含泪的微笑。”现请你调动自己的积累,以童年为话题,说一句很美的话.例:童年是记忆天幕上永远善良的星星;童年是妈妈的摇车,不停的摇啊摇;童年是一支自己射出很远飞逝不见的箭。

    9.补充课外文言文《滥竽充数》(见81页)

    10.我来说自己的童年、童年里那有趣的故事。

    学生小结其收获:

    教学后记:

    数学教案-切线的判定性质教案模板


    切线的判定和性质(一)

    教学目标:

    1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;

    2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;

    3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.

    教学重点:切线的判定定理和切线判定的方法;

    教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.

    教学过程设计

    (一)复习、发现问题

    1.直线与圆的三种位置关系

    在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?

    2、观察、提出问题、分析发现(教师引导)

    图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?

    如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.

    发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.

    (二)切线的判定定理:

    1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

    2、对定理的理解:

    引导学生理解:①经过半径外端;②垂直于这条半径.

    请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.

    图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.

    从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.

    (三)切线的判定方法

    教师组织学生归纳.切线的判定方法有三种:

    ①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.

    (四)应用定理,强化训练

    例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

    求证:直线AB是⊙O的切线.

    分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。

    证明:连结0C

    ∵0A=0B,CA=CB,”

    ∴0C是等腰三角形0AB底边AB上的中线.

    ∴AB⊥OC.

    直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线.

    练习1判断下列命题是否正确.

    (1)经过半径外端的直线是圆的切线.

    (2)垂直于半径的直线是圆的切线.

    (3)过直径的外端并且垂直于这条直径的直线是圆的切线.

    (4)和圆有一个公共点的直线是圆的切线.

    (5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.

    采取学生抢答的形式进行,并要求说明理由,

    练习P106,1、2

    目的:使学生初步会应用切线的判定定理,对定理加深理解)

    (五)小结

    1、知识:切线的判定定理.着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可.

    2、方法:判定一条直线是圆的切线的三种方法:

    (1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。

    (2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.

    (3)根据切线的判定定理来判定.

    其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.

    3、能力:初步会应用切线的判定定理.

    (六)作业P115中2、4、5;P117中B组1.

    切线的判定和性质(二)

    教学目标:

    1、使学生理解切线的性质定理及推论;

    2、通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力;

    教学重点:切线的性质定理和推论1、推论2.

    教学难点:利用“反证法”来证明切线的性质定理.

    教学设计:

    (一)基本性质

    1、观察:(组织学生,使学生从感性认识到理性认识)

    2、归纳:(引导学生完成)

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;

    猜想:圆的切线垂直于经过切点的半径.

    引导学生应用“反证法”证明.分三步:

    (1)假设切线AT不垂直于过切点的半径OA,

    (2)同时作一条AT的垂线OM.通过证明得到矛盾,OM<OA这条半径.则有直线和圆的位置关系中的数量关系,得AT和⊙O相交与题设相矛盾.

    (3)承认所要的结论AT⊥AO.

    切线的性质定理:圆的切线垂直于经过切点的半径.

    指出:定理中题设和结论中涉及到的三个要点:切线、切点、垂直.

    引导学生发现:

    推论1:经过圆心且垂直于切线的直线必经过切点.

    推论2:经过切点且垂于切线的直线必经过圆心.

    引导学生分析性质定理及两个推论的条件和结论问的关系,总结出如下结论:

    如果一条直线具备下列三个条件中的任意两个,就可推出第三个.

    (1)垂直于切线;

    (2)过切点;

    (3)过圆心.

    (二)归纳切线的性质

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

    (3)切线垂直于过切点的半径;(切线的性质定理)

    (4)经过圆心垂直于切线的直线必过切点;(推论1)

    (5)经过切点垂直于切线的直线必过圆心.(推论2)

    (三)应用举例,强化训练.

    例1、如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

    求证:AC平分∠DAB.

    引导学生分析:条件CD是⊙O的切线,可得什么结论;由AD⊥CD,又可得什么.

    证明:连结OC.

    ∴AC平分∠DAB.

    例2、求证:如果圆的两条切线互相平行,则连结两个切点的线段是直径。

    已知:AB、CD是⊙O的两条切线,E、F为切点,且AB∥CD

    求证:连结E、F的线段是直径。

    证明:连结EO并延长

    ∵AB切⊙O于E,∴OE⊥AB,

    ∵AB∥CD,∴OE⊥CD.

    ∵CD是⊙O切线,F为切点,∴OE必过切点F

    ∴EF为⊙O直径

    强化训练:P109,1

    3、求证:经过直径两端点的切线互相平行。

    已知:AB为⊙O直径,MN、CD为⊙O切线,切点为A、B

    求证:MN∥CD

    证明:∵MN切⊙O于A,AB为⊙O直径

    ∴MN⊥AB

    ∵CD切⊙O于B,B为半径外端

    ∴CD⊥AB,

    ∴MN∥CD.

    (四)小结

    1、知识:切线的性质:

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

    (3)切线垂直于过切点的半径;(切线的性质定理)

    (4)经过圆心垂直于切线的直线必过切点;(推论1)

    (5)经过切点垂直于切线的直线必过圆心.(推论2)

    2、能力和方法:

    凡是题目中给出切线的切点,往往“连结”过切点的半径.从而运用切线的性质定理,产生垂直的位置关系.

    (五)作业教材P109练习2;教材P116中7.

    切线的判定和性质(三)

    教学目标:

    1、使学生学能灵活运用切线的判定方法和切线的性质证明问题;

    2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律;

    3、通过对切线的综合型例题分析和论证,激发学生的思维.

    教学重点:对切线的判定方法及其性质的准确、熟炼、灵活地运用.

    教学难点:综合型例题分析和论证的思维过程.

    教学设计:

    (一)复习与归纳

    1、切线的判定

    切线的判定方法有三种:

    ①直线与圆有唯一公共点;

    ②直线到圆心的距离等于该圆的半径;

    ③切线的判定定理.即经过半径外端并且垂直于这条半径的直线是圆的切线.

    2、切线的性质:

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

    (3)切线垂直于过切点的半径;(切线的性质定理)

    (4)经过圆心垂直于切线的直线必过切点;(推论1)

    (5)经过切点垂直于切线的直线必过圆心.(推论2)

    (二)灵活应用

    例1(P108例3)、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.

    证明:连结OD.

    ∵OA=OD,∴∠1=∠2,

    ∵AD∥OC,∴∠1=∠3、∠2=∠4

    ∴∠3=∠4

    在△OBC和△ODC中,

    OB=OD,∠3=∠4,OC=OC,

    ∴△OBC≌△ODC,∴∠OBC=∠ODC.

    ∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°.

    ∴DC是⊙O的切线.

    例2(P110例4)、如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.

    证明:连结OE,过O作OF⊥CD,垂足为F.

    ∵AB与小圆O切于点点E,∴OE⊥AB.

    又∵AB=CD,

    ∴OF=OE,又OF⊥CD,

    ∴CD与小圆O相切.

    学生归纳:(1)证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.);

    (2)“连结”过切点的半径,产生垂直的位置关系.

    例3、已知:AB是半⊙O直径,CD⊥AB于D,EC是切线,E为切点

    求证:CE=CF

    证明:连结OE

    ∵BE=BO∴∠3=∠B

    ∵CE切⊙O于E

    ∴OE⊥CE∠2+∠3=90°

    ∵CD⊥AB∴∠4+∠B=90°

    ∴∠2=∠4

    ∵∠1=∠4∴∠1=∠2

    ∴CE=CF

    以上例题让学生自主分析、论证,教师指导书写规范,观察学生推理的严密性和学生共同存在的问题,及时解决.

    巩固练习:P111练习1、2.

    (三)小结:

    1、知识:(指导学生归纳)切线的判定方法和切线的性质

    2、能力:①灵活运用切线的判定方法和切线的性质证明问题;②作辅助线的能力和技巧.

    (四)作业:教材P115,1(1)、2、3.

    探究活动

    问题:(北京西城区,2002)已知:AB为⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,设切点为C.

    (1)当点P在AB延长线上的位置如图1所示时,连结AC,作∠APC的平分线,交AC于点D,请你测量出∠CDP的度数;

    (2)当点P在AB延长线上的位置如图2和图3所示时,连结AC,请你分别在这两个图中用尺规作∠APC的平分线(不写做法,保留作固痕迹),设此角平分线交AC于点D,然后在这两个图中分别测量出∠CDP的度数;

    猜想:∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?请对称的猜想加以证明.

    解:(1)测量结果:

    (2)图2中的测量结果:

    图3中的测量结果:

    猜想:

    证明:

    解:(1)测量结果:∠CDP=45°.

    (2)图2中的测量结果:∠CDP=45°.

    图3中的测量结果:∠CDP=45°.

    猜想:∠CDP=45°,不随点P在AB延长线上的位置的变化而变化.

    证明:连结OC.

    ∵PC切⊙O于点C,

    ∴PC⊥OC,

    ∴∠1+∠CPO=90°,

    ∵PC平分∠APC,

    ∴∠2=1/2∠CPO.

    ∵OA=OC

    ∴∠A=∠3.

    ∴∠1=∠A+∠3,

    ∴∠A=1/2∠1.

    ∴∠CDP=∠A+∠2=1/2(∠1+∠CPO)=45°.

    ∴猜想正确.

    经典初中教案切线的判定性质


    (一)

    教学目标:

    1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;

    2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;

    3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.

    教学重点:切线的判定定理和切线判定的方法;

    教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.

    教学过程设计

    (一)复习、发现问题

    1.直线与圆的三种位置关系

    在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?

    2、观察、提出问题、分析发现(教师引导)

    图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?

    如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.

    发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.

    (二)切线的判定定理:

    1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

    2、对定理的理解:

    引导学生理解:①经过半径外端;②垂直于这条半径.

    请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.

    图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.

    从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.

    (三)切线的判定方法

    教师组织学生归纳.切线的判定方法有三种:

    ①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.

    (四)应用定理,强化训练'

    例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

    求证:直线AB是⊙O的切线.

    分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。

    证明:连结0C

    ∵0A=0B,CA=CB,”

    ∴0C是等腰三角形0AB底边AB上的中线.

    ∴AB⊥OC.

    直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线.

    练习1判断下列命题是否正确.

    (1)经过半径外端的直线是圆的切线.

    (2)垂直于半径的直线是圆的切线.

    (3)过直径的外端并且垂直于这条直径的直线是圆的切线.

    (4)和圆有一个公共点的直线是圆的切线.

    (5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.

    采取学生抢答的形式进行,并要求说明理由,

    练习P106,1、2

    目的:使学生初步会应用切线的判定定理,对定理加深理解)

    (五)小结

    1、知识:切线的判定定理.着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可.

    2、方法:判定一条直线是圆的切线的三种方法:

    (1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。

    (2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.

    (3)根据切线的判定定理来判定.

    其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.

    3、能力:初步会应用切线的判定定理.

    (六)作业P115中2、4、5;P117中B组1.

    (二)

    教学目标:

    1、使学生理解切线的性质定理及推论;

    2、通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力;

    教学重点:切线的性质定理和推论1、推论2.

    教学难点:利用“反证法”来证明切线的性质定理.

    教学设计:

    (一)基本性质

    1、观察:(组织学生,使学生从感性认识到理性认识)

    2、归纳:(引导学生完成)

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;

    猜想:圆的切线垂直于经过切点的半径.

    引导学生应用“反证法”证明.分三步:

    (1)假设切线AT不垂直于过切点的半径OA,

    (2)同时作一条AT的垂线OM.通过证明得到矛盾,OM<OA这条半径.则有直线和圆的位置关系中的数量关系,得AT和⊙O相交与题设相矛盾.

    (3)承认所要的结论AT⊥AO.

    切线的性质定理:圆的切线垂直于经过切点的半径.

    指出:定理中题设和结论中涉及到的三个要点:切线、切点、垂直.

    引导学生发现:

    推论1:经过圆心且垂直于切线的直线必经过切点.

    推论2:经过切点且垂于切线的直线必经过圆心.

    引导学生分析性质定理及两个推论的条件和结论问的关系,总结出如下结论:

    如果一条直线具备下列三个条件中的任意两个,就可推出第三个.

    (1)垂直于切线;

    (2)过切点;

    (3)过圆心.

    (二)归纳切线的性质

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

    (3)切线垂直于过切点的半径;(切线的性质定理)

    (4)经过圆心垂直于切线的直线必过切点;(推论1)

    (5)经过切点垂直于切线的直线必过圆心.(推论2)

    (三)应用举例,强化训练.

    例1、如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

    求证:AC平分∠DAB.

    引导学生分析:条件CD是⊙O的切线,可得什么结论;由AD⊥CD,又可得什么.

    证明:连结OC.

    ∴AC平分∠DAB.

    例2、求证:如果圆的两条切线互相平行,则连结两个切点的线段是直径。

    已知:AB、CD是⊙O的两条切线,E、F为切点,且AB∥CD

    求证:连结E、F的线段是直径。

    证明:连结EO并延长

    ∵AB切⊙O于E,∴OE⊥AB,

    ∵AB∥CD,∴OE⊥CD.

    ∵CD是⊙O切线,F为切点,∴OE必过切点F

    ∴EF为⊙O直径

    强化训练:P109,1

    3、求证:经过直径两端点的切线互相平行。

    已知:AB为⊙O直径,MN、CD为⊙O切线,切点为A、B

    求证:MN∥CD

    证明:∵MN切⊙O于A,AB为⊙O直径

    ∴MN⊥AB

    ∵CD切⊙O于B,B为半径外端

    ∴CD⊥AB,

    ∴MN∥CD.

    (四)小结

    1、知识:切线的性质:

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

    (3)切线垂直于过切点的半径;(切线的性质定理)

    (4)经过圆心垂直于切线的直线必过切点;(推论1)

    (5)经过切点垂直于切线的直线必过圆心.(推论2)

    2、能力和方法:

    凡是题目中给出切线的切点,往往“连结”过切点的半径.从而运用切线的性质定理,产生垂直的位置关系.

    (五)作业教材P109练习2;教材P116中7.

    (三)

    教学目标:

    1、使学生学能灵活运用切线的判定方法和切线的性质证明问题;

    2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律;

    3、通过对切线的综合型例题分析和论证,激发学生的思维.

    教学重点:对切线的判定方法及其性质的准确、熟炼、灵活地运用.

    教学难点:综合型例题分析和论证的思维过程.

    教学设计:

    (一)复习与归纳

    1、切线的判定

    切线的判定方法有三种:

    ①直线与圆有唯一公共点;

    ②直线到圆心的距离等于该圆的半径;

    ③切线的判定定理.即经过半径外端并且垂直于这条半径的直线是圆的切线.

    2、切线的性质:

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

    (3)切线垂直于过切点的半径;(切线的性质定理)

    (4)经过圆心垂直于切线的直线必过切点;(推论1)

    (5)经过切点垂直于切线的直线必过圆心.(推论2)

    (二)灵活应用

    例1(P108例3)、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.

    证明:连结OD.

    ∵OA=OD,∴∠1=∠2,

    ∵AD∥OC,∴∠1=∠3、∠2=∠4

    ∴∠3=∠4

    在△OBC和△ODC中,

    OB=OD,∠3=∠4,OC=OC,

    ∴△OBC≌△ODC,∴∠OBC=∠ODC.

    ∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°.

    ∴DC是⊙O的切线.

    例2(P110例4)、如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.

    证明:连结OE,过O作OF⊥CD,垂足为F.

    ∵AB与小圆O切于点点E,∴OE⊥AB.

    又∵AB=CD,

    ∴OF=OE,又OF⊥CD,

    ∴CD与小圆O相切.

    学生归纳:(1)证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.);

    (2)“连结”过切点的半径,产生垂直的位置关系.

    例3、已知:AB是半⊙O直径,CD⊥AB于D,EC是切线,E为切点

    求证:CE=CF

    证明:连结OE

    ∵BE=BO∴∠3=∠B

    ∵CE切⊙O于E

    ∴OE⊥CE∠2+∠3=90°

    ∵CD⊥AB∴∠4+∠B=90°

    ∴∠2=∠4

    ∵∠1=∠4∴∠1=∠2

    ∴CE=CF

    以上例题让学生自主分析、论证,教师指导书写规范,观察学生推理的严密性和学生共同存在的问题,及时解决.

    巩固练习:P111练习1、2.

    (三)小结:

    1、知识:(指导学生归纳)切线的判定方法和切线的性质

    2、能力:①灵活运用切线的判定方法和切线的性质证明问题;②作辅助线的能力和技巧.

    (四)作业:教材P115,1(1)、2、3.

    探究活动

    问题:(北京西城区,2002)已知:AB为⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,设切点为C.

    (1)当点P在AB延长线上的位置如图1所示时,连结AC,作∠APC的平分线,交AC于点D,请你测量出∠CDP的度数;

    (2)当点P在AB延长线上的位置如图2和图3所示时,连结AC,请你分别在这两个图中用尺规作∠APC的平分线(不写做法,保留作固痕迹),设此角平分线交AC于点D,然后在这两个图中分别测量出∠CDP的度数;

    猜想:∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?请对称的猜想加以证明.

    解:(1)测量结果:

    (2)图2中的测量结果:

    图3中的测量结果:

    猜想:

    证明:

    解:(1)测量结果:∠CDP=45°.

    (2)图2中的测量结果:∠CDP=45°.

    图3中的测量结果:∠CDP=45°.

    猜想:∠CDP=45°,不随点P在AB延长线上的位置的变化而变化.

    证明:连结OC.

    ∵PC切⊙O于点C,

    ∴PC⊥OC,

    ∴∠1+∠CPO=90°,

    ∵PC平分∠APC,

    ∴∠2=1/2∠CPO.

    ∵OA=OC

    ∴∠A=∠3.

    ∴∠1=∠A+∠3,

    ∴∠A=1/2∠1.

    ∴∠CDP=∠A+∠2=1/2(∠1+∠CPO)=45°.

    ∴猜想正确.

    切线的判定性质的教学方案


    (一)

    教学目标:

    1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;

    2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;

    3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.

    教学重点:切线的判定定理和切线判定的方法;

    教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.

    教学过程设计

    (一)复习、发现问题

    1.直线与圆的三种位置关系

    在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?

    2、观察、提出问题、分析发现(教师引导)

    图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?

    如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.

    发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.

    (二)切线的判定定理:

    1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

    2、对定理的理解:

    引导学生理解:①经过半径外端;②垂直于这条半径.

    请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.

    图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.

    从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.

    (三)切线的判定方法

    教师组织学生归纳.切线的判定方法有三种:

    ①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.

    (四)应用定理,强化训练'

    例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

    求证:直线AB是⊙O的切线.

    分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。

    证明:连结0C

    ∵0A=0B,CA=CB,”

    ∴0C是等腰三角形0AB底边AB上的中线.

    ∴AB⊥OC.

    直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线.

    练习1判断下列命题是否正确.

    (1)经过半径外端的直线是圆的切线.

    (2)垂直于半径的直线是圆的切线.

    (3)过直径的外端并且垂直于这条直径的直线是圆的切线.

    (4)和圆有一个公共点的直线是圆的切线.

    (5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.

    采取学生抢答的形式进行,并要求说明理由,

    练习P106,1、2

    目的:使学生初步会应用切线的判定定理,对定理加深理解)

    (五)小结

    1、知识:切线的判定定理.着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可.

    2、方法:判定一条直线是圆的切线的三种方法:

    (1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。

    (2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.

    (3)根据切线的判定定理来判定.

    其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.

    3、能力:初步会应用切线的判定定理.

    (六)作业P115中2、4、5;P117中B组1.

    (二)

    教学目标:

    1、使学生理解切线的性质定理及推论;

    2、通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力;

    教学重点:切线的性质定理和推论1、推论2.

    教学难点:利用“反证法”来证明切线的性质定理.

    教学设计:

    (一)基本性质

    1、观察:(组织学生,使学生从感性认识到理性认识)

    2、归纳:(引导学生完成)

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;

    猜想:圆的切线垂直于经过切点的半径.

    引导学生应用“反证法”证明.分三步:

    (1)假设切线AT不垂直于过切点的半径OA,

    (2)同时作一条AT的垂线OM.通过证明得到矛盾,OM<OA这条半径.则有直线和圆的位置关系中的数量关系,得AT和⊙O相交与题设相矛盾.

    (3)承认所要的结论AT⊥AO.

    切线的性质定理:圆的切线垂直于经过切点的半径.

    指出:定理中题设和结论中涉及到的三个要点:切线、切点、垂直.

    引导学生发现:

    推论1:经过圆心且垂直于切线的直线必经过切点.

    推论2:经过切点且垂于切线的直线必经过圆心.

    引导学生分析性质定理及两个推论的条件和结论问的关系,总结出如下结论:

    如果一条直线具备下列三个条件中的任意两个,就可推出第三个.

    (1)垂直于切线;

    (2)过切点;

    (3)过圆心.

    (二)归纳切线的性质

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

    (3)切线垂直于过切点的半径;(切线的性质定理)

    (4)经过圆心垂直于切线的直线必过切点;(推论1)

    (5)经过切点垂直于切线的直线必过圆心.(推论2)

    (三)应用举例,强化训练.

    例1、如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

    求证:AC平分∠DAB.

    引导学生分析:条件CD是⊙O的切线,可得什么结论;由AD⊥CD,又可得什么.

    证明:连结OC.

    ∴AC平分∠DAB.

    例2、求证:如果圆的两条切线互相平行,则连结两个切点的线段是直径。

    已知:AB、CD是⊙O的两条切线,E、F为切点,且AB∥CD

    求证:连结E、F的线段是直径。

    证明:连结EO并延长

    ∵AB切⊙O于E,∴OE⊥AB,

    ∵AB∥CD,∴OE⊥CD.

    ∵CD是⊙O切线,F为切点,∴OE必过切点F

    ∴EF为⊙O直径

    强化训练:P109,1

    3、求证:经过直径两端点的切线互相平行。

    已知:AB为⊙O直径,MN、CD为⊙O切线,切点为A、B

    求证:MN∥CD

    证明:∵MN切⊙O于A,AB为⊙O直径

    ∴MN⊥AB

    ∵CD切⊙O于B,B为半径外端

    ∴CD⊥AB,

    ∴MN∥CD.

    (四)小结

    1、知识:切线的性质:

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

    (3)切线垂直于过切点的半径;(切线的性质定理)

    (4)经过圆心垂直于切线的直线必过切点;(推论1)

    (5)经过切点垂直于切线的直线必过圆心.(推论2)

    2、能力和方法:

    凡是题目中给出切线的切点,往往“连结”过切点的半径.从而运用切线的性质定理,产生垂直的位置关系.

    (五)作业教材P109练习2;教材P116中7.

    (三)

    教学目标:

    1、使学生学能灵活运用切线的判定方法和切线的性质证明问题;

    2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律;

    3、通过对切线的综合型例题分析和论证,激发学生的思维.

    教学重点:对切线的判定方法及其性质的准确、熟炼、灵活地运用.

    教学难点:综合型例题分析和论证的思维过程.

    教学设计:

    (一)复习与归纳

    1、切线的判定

    切线的判定方法有三种:

    ①直线与圆有唯一公共点;

    ②直线到圆心的距离等于该圆的半径;

    ③切线的判定定理.即经过半径外端并且垂直于这条半径的直线是圆的切线.

    2、切线的性质:

    (1)切线和圆有唯一公共点;(切线的定义)

    (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

    (3)切线垂直于过切点的半径;(切线的性质定理)

    (4)经过圆心垂直于切线的直线必过切点;(推论1)

    (5)经过切点垂直于切线的直线必过圆心.(推论2)

    (二)灵活应用

    例1(P108例3)、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.

    证明:连结OD.

    ∵OA=OD,∴∠1=∠2,

    ∵AD∥OC,∴∠1=∠3、∠2=∠4

    ∴∠3=∠4

    在△OBC和△ODC中,

    OB=OD,∠3=∠4,OC=OC,

    ∴△OBC≌△ODC,∴∠OBC=∠ODC.

    ∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°.

    ∴DC是⊙O的切线.

    例2(P110例4)、如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.

    证明:连结OE,过O作OF⊥CD,垂足为F.

    ∵AB与小圆O切于点点E,∴OE⊥AB.

    又∵AB=CD,

    ∴OF=OE,又OF⊥CD,

    ∴CD与小圆O相切.

    学生归纳:(1)证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.);

    (2)“连结”过切点的半径,产生垂直的位置关系.

    例3、已知:AB是半⊙O直径,CD⊥AB于D,EC是切线,E为切点

    求证:CE=CF

    证明:连结OE

    ∵BE=BO∴∠3=∠B

    ∵CE切⊙O于E

    ∴OE⊥CE∠2+∠3=90°

    ∵CD⊥AB∴∠4+∠B=90°

    ∴∠2=∠4

    ∵∠1=∠4∴∠1=∠2

    ∴CE=CF

    以上例题让学生自主分析、论证,教师指导书写规范,观察学生推理的严密性和学生共同存在的问题,及时解决.

    巩固练习:P111练习1、2.

    (三)小结:

    1、知识:(指导学生归纳)切线的判定方法和切线的性质

    2、能力:①灵活运用切线的判定方法和切线的性质证明问题;②作辅助线的能力和技巧.

    (四)作业:教材P115,1(1)、2、3.

    探究活动

    问题:(北京西城区,2002)已知:AB为⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,设切点为C.

    (1)当点P在AB延长线上的位置如图1所示时,连结AC,作∠APC的平分线,交AC于点D,请你测量出∠CDP的度数;

    (2)当点P在AB延长线上的位置如图2和图3所示时,连结AC,请你分别在这两个图中用尺规作∠APC的平分线(不写做法,保留作固痕迹),设此角平分线交AC于点D,然后在这两个图中分别测量出∠CDP的度数;

    猜想:∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?请对称的猜想加以证明.

    解:(1)测量结果:

    (2)图2中的测量结果:

    图3中的测量结果:

    猜想:

    证明:

    解:(1)测量结果:∠CDP=45°.

    (2)图2中的测量结果:∠CDP=45°.

    图3中的测量结果:∠CDP=45°.

    猜想:∠CDP=45°,不随点P在AB延长线上的位置的变化而变化.

    证明:连结OC.

    ∵PC切⊙O于点C,

    ∴PC⊥OC,

    ∴∠1+∠CPO=90°,

    ∵PC平分∠APC,

    ∴∠2=1/2∠CPO.

    ∵OA=OC

    ∴∠A=∠3.

    ∴∠1=∠A+∠3,

    ∴∠A=1/2∠1.

    ∴∠CDP=∠A+∠2=1/2(∠1+∠CPO)=45°.

    ∴猜想正确.

    经典范文:九年级上册第二单元复习学案


    复习目标:

    1.通过自我复习,检查等方式巩固本单元的字词常识。

    2.梳理单元内容,通过分析《谈生命》明确散文阅读方法

    3.直击中考:通过课外阅读训练,让学生感受散文的魅力,激发热爱生活的情感。

    单元知识梳理:

    自主复习一:字词:(注音、书写、释义)

    巉岩芳馨云翳周道如砥沉湎乐此不疲寒伧风姿绰约自主复习二:文学常识(评价、代表作)冰心王鼎钧勃兰兑斯贾平凹自主复习三:重点课文复习:《谈生命》1.一棵小树经历了哪几种生命状态?暗示了怎样的人生历程?2.在这些生命的状态中,小树表现了怎样的心理和情绪?3.从选文中你领悟到生命的本质是什么?生命的规律又是怎样的?4.为什么说“不是每一粒种子都能成树,不生长的便成了空壳”?怎样理解“在快乐中我们要感谢生命,在痛苦中我们也要感谢生命”?5.生命还像什么?结合你的经历和感悟谈谈看法?自主复习四:讨论交流明确散文特点、散文阅读的方法。特征:表达方式:表现手法:结构手法:语言修辞:人称:中考题型:1.根据短文内容回答问题。2.揣摩词语或语句的含义和作用。3.谈谈你对某句话的理解和看法。4.表达方式、表现手法、语言修辞。5.字词的音、形、义。6.这篇散文很感人,你认为使自己感动的内容是什么?你受到什么启发和教育?7.仿写、填写词句。8.请你就本文提一个有价值的问题。第一步:整体感知:1.通读全文:标题、正文、附注文字。2.大体了解:作者、背景、内容、结构、中心。3.注意体会:重点语句第二步:局部揣摩1.这个词句的字面意思是什么。2.找到问题出在什么地方。3.联系上下文分析、体会。4.联系中心分析、体会。注意:绝对不能孤立的看待每一个问题。第三步:组织好语言1.恰倒好处的利用文中的语言。2.利用好诗词、名言、警句。3.选取优美、富含哲理的词句。4.语言连贯、得体,意思统一。5.回答全面,重点突出。

    切线的判定性质相关教学方案


    (一)

    教学目标:

    1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;

    2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;

    3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.

    教学重点:切线的判定定理和切线判定的方法;

    教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.

    教学过程设计

    (一)复习、发现问题

    1.直线与圆的三种位置关系

    在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?

    2、观察、提出问题、分析发现(教师引导)

    图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?

    如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.

    发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.

    (二)切线的判定定理:

    1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

    2、对定理的理解:

    引导学生理解:①经过半径外端;②垂直于这条半径.

    请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.

    图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.

    从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.

    (三)切线的判定方法

    教师组织学生归纳.切线的判定方法有三种:

    ①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.

    (四)应用定理,强化训练'

    例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

    求证:直线AB是⊙O的切线.

    分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。

    证明:连结0C

    ∵0A=0B,CA=CB,”

    ∴0C是等腰三角形0AB底边AB上的中线.

    ∴AB⊥OC.

    直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线.

    练习1判断下列命题是否正确.

    (1)经过半径外端的直线是圆的切线.

    (2)垂直于半径的直线是圆的切线.

    (3)过直径的外端并且垂直于这条直径的直线是圆的切线.

    (4)和圆有一个公共点的直线是圆的切线.

    (5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.

    采取学生抢答的形式进行,并要求说明理由,

    练习P106,1、2

    目的:使学生初步会应用切线的判定定理,对定理加深理解)

    (五)小结

    1、知识:切线的判定定理.着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可.

    2、方法:判定一条直线是圆的切线的三种方法:

    (1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。

    (2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.

    (3)根据切线的判定定理来判定.

    其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.

    3、能力:初步会应用切线的判定定理.

    (六)作业P115中2、4、5;P117中B组1.

    第123页

    九年级教案模板


    九年级第三章平行四边形回顾与思考

    一、教学目标

    1、认识特殊四边形之间的关系,并能证明它们的性质定理和判定定理;+

    2、应用所得的结论通过计算和证明解决一些问题;

    3、通过证明使学生对证明的必要性有进一步的认识

    4、通过四边形的从属关系渗透集合思想。

    5、通过理解四种四边形内在联系,培养学生辩证观点。

    二、教学重点、难点和疑点

    1.重点:应用所得的结论通过计算和证明解决一些问题;

    2.难点:特殊四边形之间的关系及性质,利用所得的结论通过计算和证明解决一些问题;

    3.疑点:平行四边形,矩形,菱形,正方形之间的共性,特性及从属关系(可以通过列表、画图,简单的关系图,举反例等来说明)。

    三、教学方法

    归纳法,边讲边练法。

    四、教学手段

    投影。

    五、教学过程:

    (一)、学生完成下列填空:

    特殊四边形的联系与区别:

    对角线

    平行四边形

    对边平行且相等

    对角相等

    邻角互补

    对角线互相平分

    矩形

    对边平行且相等

    四个角都是直角

    对角线互相平分且相等

    菱形

    对边平行且四

    条边都相等

    对角相等

    对角线互相垂直平分,

    每条对角线平分一组对角

    正方形

    对边平行且四

    条边都相等

    四个角都是直角

    对角线互相平分且相等

    每条对角线平分一组对角

    (二)讲解新课

    1、回顾本章主要内容

    本章内容:矩形的性质与判定

    平行四边形的性质与判定正方形的性质与判定

    菱形的性质与判定

    等腰梯形的性质与判定

    三角形中位线的性质

    夹在两条平行线之间的平行线相等

    直角三角形斜边上的中线等于斜边的一半

    练习1:(投影)

    (1).在等腰梯形ABCD中,AD∥BC,AB=CD,∠B=40°,则∠A=_____,∠C=_____,∠D=_____.

    (2)菱形的对角线长分别为24和10,则此菱形的周长为___________,面积为____________.

    (3)矩形ABCD对角线夹角为60°,AB=2cm则对角线长为,矩形面积为;

    (4)依次连接任意四边形四条边的中点所构成四边形是,当四边形是(图形)时,新的四边形是菱形

    2、四边形的性质与判定

    角:角:

    性质边:判定边:

    对角线:对角线:

    1)通过从角,边,对角线三方面.让学生叙述平行四边形、矩形、菱形、正方形的定义和它们的特殊性质,以及它们的联系与区别。

    2)通过图表进一步.说明平行四边形,矩形,菱形,正方形的内在联系。

    第讲物质的构成导学案


    第10讲物质的构成考点内容年份题型题号分值考查方式1分子的性质及应用选择题92以选择题的形式考查用分子性质解释相关现象选择题92结合教材实验以选择题的形式考查分子的不断运动选择题112以选择题的形式考查分子的基本性质2原子构成、性质及应用选择题22以选择题的形式考查原子数目的表示方法3核外电子排布、离子选择题40.5以选择题的形式考查3个铁离子的表示方法选择题6(c)0.5以选择题的形式考查考查有关离子的分析推理选择题6(d)0.5以选择题的形式考查离子中质子数与核外电子数的关系本讲内容我省在考查时多以选择题的形式出现,占试卷分值约为3分,预计在XX年我省中考会继续以考查分子的性质与应用,原子、离子等知识为重点。分子和原子分子原子概念分子是保持物质________的最小粒子原子是________中的最小粒子相同点①分子、原子的体积和质量都____;②分子、原子都在不断地____;③分子、原子之间都有____;④都是构成物质的基本粒子区别在化学变化中分子____再分在化学变化中原子____再分联系分子、原子都是构成物质的粒子;分子是由____构成的原子的构成、性质及应用1.原子是可以再分的,但由于原子是________中的最小粒子,所以原子在________中不可以再分。2.原子是由________________构成的,原子核是由________和________构成的,构成原子的三种粒子是:________(带正电)、________(不带电)、________(带负电)。(注意特例:一般的氢原子无________)由于原子核所带电量和核外电子所带的____________,电性________,因此整个原子________。3.在原子中:________数=________数=________数,但是________(填“一定”或“不一定”)等于中子数。4.原子核很小,相对于原子核来说核外有很大的空间,电子在核外做高速运动。5.原子的质量主要集中在________上,这是因为________和________的质量几乎相等,而一个电子的质量只相当于一个质子质量的1/1836。6.相对原子质量:是以一种________(碳-12)质量的1/12作为标准,其他__________跟它相比较所得的比,作为这种原子的相对原子质量(符号为ar)。如果用算式表示,可以表示为:相对原子质量=____________________________________,忽略原子中电子的质量,则发现:相对原子质量≈________数+________数。核外电子的排布1.核外电子排布的初步知识(1)通常用________表明运动着的电子离核远近的不同。(2)元素原子核外电子最少的有________层,最多的有________层,最外层电子最多不超过________个。(只有1层的不超过2个)2.原子结构示意图(1)原子结构示意图的含义(2)原子结构与元素性质的关系元素种类最外层电子数元素的性质金属元素____个原子易____电子非金属元素____个原子易____电子稀有气体元素____个(氦2个)不易得、失电子,稳定结论____________决定了元素的化学性质离子1.带电的____________叫做离子,带正电荷的离子叫做________,带负电荷的离子叫做________。2.离子符号表示的意义【温馨提示】①在原子中:核电荷数=原子序数=质子数=核外电子数(不一定等于中子数)。②在离子中:核电荷数=原子序数=质子数≠核外电子数(不一定等于中子数)。3.原子和离子的关系粒子结构电性粒子名称符号结构示意图原子核电荷数_____核外电子数电中性氖原子_____离子阳离子核电荷数_____核外电子数带正电钠离子_____阴离子核电荷数_____核外电子数带负电氯离子_____原子与离子的联系相互转化:4.分子、原子和离子的比较相同点①都是构成物质的粒子;②都是微观概念,既讲种类,又论个数;③都有一定的质量和体积,且质量、体积都很小;④都在不停地运动,粒子间都有一定间隔;⑤同种粒子的性质相同,不同种粒子的性质不同相异点①化学变化中,分子可分,原子不能再分;②分子可分成原子,而原子也可构成分子;③分子、原子不显电性,离子显电性;④原子和离子可通过得失电子相互转化转化关系原子命题点1分子的性质及应用(·河北)用“分子的观点”解释下列现象,不正确的是()a.水结成冰——分子发生变化b.气体易被压缩——分子间隔大c.水加糖变甜——分子不停地运动d.铁块很难压缩——分子间存在斥力思路点拨:水结成冰,是分子间间隔改变,分子本身并没有发生变化。本题考查用微粒的观点解释某些常见的现象。需要认识微粒的主要性质(以分子为例):分子在不停地运动,分子间有间隔,分子的质量和体积都很小,分子间有作用力。另外,要熟记一些微粒典型的宏观表现的例子,以便于区分它们。1.(·河北)如图所示实验不能用“分子在不停地运动”解释的是()a.闻到气味b.气体混合c.刻出划痕d.品红溶解2.(·河北)登山时喝空的矿泉水瓶,拧紧瓶盖。下山后瓶子变瘪,瓶内的气体分子()a.个数减少b.质量减少c.间隔变小d.体积减小3.(·石家庄一模)用分子、原子的观点解释下列现象,其中合理的是()a.液氧是淡蓝色的——氧气分子是淡蓝色的b.冰受热变为水,水受热变为水蒸气——构成物质的分子可以再分c.水结冰后不能流动——水分子在0℃以下将不再运动d.5ml水与5ml食醋混合后总体积小于10ml——分子之间有间隔命题点2原子的构成、性质及应用(·北京)一种铁原子的原子核内有26个质子和30个中子,该原子的核外电子数为()a.4b.26c.30d.56思路点拨:在原子中:原子序数=核电荷数=质子数=核外电子数,相对原子质量≈质子数+中子数。弄清原子中各微粒间的数量关系是解决此类问题的关键所在。4.(·台州)如图为小明制作的原子模型,外圈上小球为电子,内圈为原子核。下列说法正确的是()a.该模型表示一种碳原子b.该原子的核电荷数为4c.该原子的质量主要集中在2个电子上d.该原子核由2个质子和2个中子构成5.(·荆州)原子核中一定含有的粒子是()a.中子b.质子c.电子d.质子和中子6.(·杭州)考古学上常用碳-14原子测定文物年代,碳-14原子和碳-12原子在原子结构上的不同之处是中子数不同,它们的原子质量之比是________。命题点3核外电子排布、离子(·成都)两种微粒的结构示意图是na和na+,其中相同的是()a.电子数b.质子数c.电子层数d.所带电荷数思路点拨:根据原子结构示意图每一部分所表示的含义进行解答,圈内数字表示质子数。7.(·苏州)下列物质由离子构成的是()a.铜b.二氧化碳c.金刚石d.氯化钠8.(·菏泽)下列是几种微粒的结构示意图,有关说法错误的是()a.微粒①易得到电子b.微粒②和④核外电子排布相同,属于同种元素c.微粒③易形成+1价金属阳离子d.微粒④带两个单位正电荷9.(·菏泽)有a、b、c、d四种元素,其原子结构示意图表示如下:(1)d元素的名称为________,d元素与上图中________(填字母)元素的化学性质相似,d元素的离子符号为________。(2)a、b、c三种元素能形成一种化合物,其水溶液的ph________7(填“ ”“ ”或“=”)。(3)a、b两种元素的原子以1∶1的比例形成的化合物为________(写化学式),其中b元素化合价为________。第10讲物质的构成一、选择题1.(·襄阳)“一滴水中约有1.67×1021个水分子”说明了()a.分子很小b.分子可以再分c.分子之间有间隔d.分子在不断地运动2.(·云南)下列粒子中,不能直接构成物质的是()a.电子b.原子c.分子d.离子3.(·绵阳)下列各种粒子,不带电的是()a.原子核b.质子c.中子d.电子4.(·汕尾)下列物质由分子构成的是()a.水b.铝c.金刚石d.氯化钠5.(·温州)最近某科研小组证实了117号元素的存在,其原子的原子核内有117个质子和176个中子,该原子的核外电子数为()a.59b.117c.176d.2936.(·石家庄二模)用分子的知识对下列现象的解释中正确的是()a.做饭时炊烟袅袅,是由于分子间存在斥力b.一块金属很难被压缩,是由于分子间没有间隙c.变瘪的乒乓球放入热水中鼓起来,是由于分子受热变大d.房间里喷洒香水后满屋飘香,是由于分子做无规则运动7.(·荆州)下面所列各项中,与元素的化学性质关系最为密切的是()a.元素的相对原子质量b.元素的核电荷数c.原子的核外电子数d.原子的最外层电子数8.(·阜新)某离子核内所含的核电荷数为17,核外电子数为18,该粒子一定是()a.原子b.分子c.阴离子d.阳离子9.(·广州)原子的构成示意图如下,下列叙述正确的是()a.原子是实心球体b.原子、中子、电子均匀分布在原子中c.质子与电子质量相等d.整个原子的质量主要集中在原子核上10.(·石家庄市内四区毕业联考)下列说法正确的是()a.原子是不可再分的粒子b.分子是保持物质性质的最小粒子c.分子、原子都能构成物质d.相对原子质量就是原子的实际质量二、填空及简答题11.(·株洲)下图中a、b、c、d是四种粒子的结构示意图。请回答下列问题:(1)a中x=______;a粒子的化学式是______。(2)由b粒子的结构示意图可知,b粒子的名称是________。(3)以上四种结构示意图所表示的粒子中,表示离子的是________(填字母)。12.(·重庆a卷)初中化学学习中,我们初步认识了物质的微观结构。(1)氯化钠、金刚石、干冰三种物质中,由离子构成的物质是________。(2)是某粒子的结构示意图,该粒子在化学反应中容易________(填“得到”或“失去”)电子。(3)下图是co与o2反应的微观示意图,反应前后没有发生变化的粒子是________(填字母)。a.①②b.②③c.③④d.④⑤13.(·荆州)某粒子的结构示意图为(其中n≠0),请回答下列问题。(1)n的最大值为________。(2)若该粒子带两个单位的负电荷,则其对应的化学符号为________;由+6价的该元素形成的常见酸的化学式为________。(3)若m-n=10,则该粒子对应的常见金属元素有__________(填元素符号)。14.(·绥化)把握微观世界,了解构成物质的奥秘,能帮助我们更好地认识物质变化的本质。如图是某化学反应的微观模拟图:(1)反应物中单质的化学式为________,该反应的化学方程式为________________________,属于________反应(填基本反应类型)。(2)通过该图你能获得的信息有_________________________________________________________________________(答一条即可)。第10讲物质的构成考点解读考点1化学性质化学变化很小运动间隔可以不能原子考点21.化学变化化学变化2.原子核和核外电子质子中子3.核电荷质子核外电子不一定5.原子核质子中子6.碳原子原子的质量原子实际质量/碳-12原子质量的1/12质子中子考点31.(1)电子层(2)1782.(1)质子数电子层原子核该电子层的电子数(2) 4失≥4得8最外层电子数考点41.原子或原子团阳离子阴离子2.1个镁离子带2个单位正电荷2个镁离子3.=ne na+ cl各个击破例1a例2b例3b例4题组训练1.c2.c3.d4.d5.b6.7∶67.d8.b9.(1)硫bs-(2)>(3)h-1整合集训2.a3.c4.a5.b6.d7.d8.c9.d10.c(1)2s-(2)铝原子(3)ad(1)氯化钠(或nacl)(2)失去(3)d(1)8(2)s-h(3)na、mg、al(1)o24nh+3o2n2+6h置换(2)在化学反应中分子可分而原子不可分(或者原子是化学变化中的最小粒子或化学反应前后元素种类不变或氨气和氧气在高温高压催化剂的条件下反应生产氮气和水)

    【九年级切线的判定导学案】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...