你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >三角形的中位线相关教学方案
  • 三角形的中位线相关教学方案

    发表时间:2022-02-04

    【www.jk251.com - 三角形的中位线】

    初中教师上课前最好是准备一份教案,教案在我们教师的教学中非常重要,认真做好教案我们的工作会变得更加顺利,有没有可以参考的初中教案呢?下面是由小编为大家整理的三角形的中位线相关教学方案,仅供参考,欢迎大家阅读。

    教学建议

    知识结构

    重难点分析

    本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

    本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.

    教法建议

    1.对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

    2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

    教学设计示例

    一、教学目标

    1.掌握中位线的概念和三角形中位线定理

    2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

    3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

    4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

    5.通过一题多解,培养学生对数学的兴趣

    二、教学设计

    画图测量,猜想讨论,启发引导.

    三、重点、难点

    1.教学重点:三角形中位线的概论与三角形中位线性质.

    2.教学难点:三角形中位线定理的证明.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、常用画图工具

    六、教学步骤

    【复习提问】

    1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

    2.说明定理的证明思路.

    3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明?

    分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证,只要即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

    4.什么叫三角形中线?(以上复习用投影仪打出)

    【引入新课】

    1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

    (结合三角形中线的定义,让学生明确两者区别,可做一练习,在中,画出中线、中位线)

    2.三角形中位线性质

    了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

    如图所示,DE是的一条中位线,如果过D作,交AC于,那么根据平行线等分线段定理推论2,得是AC的中点,可见与DE重合,所以.由此得到:三角形中位线平行于第三边.同样,过D作,且DEFC,所以DE.因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

    三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

    应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

    由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

    (l)延长DE到F,使,连结CF,由可得ADFC.

    (2)延长DE到F,使,利用对角线互相平分的四边形是平行四边形,可得ADFC.

    (3)过点C作,与DE延长线交于F,通过证可得ADFC.

    上面通过三种不同方法得出ADFC,再由得BDFC,所以四边形DBCF是平行四边形,DFBC,又因DE,所以DE.

    (证明过程略)

    例求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

    (由学生根据命题,说出已知、求证)

    已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

    求证:四边形EFGH是平行四边形.‘

    分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

    证明:连结AC.

    ∴(三角形中位线定理).

    同理,

    ∴GHEF

    ∴四边形EFGH是平行四边形.

    【小结】

    1.三角形中位线及三角形中位线与三角形中线的区别.

    2.三角形中位线定理及证明思路.

    七、布置作业

    教材P188中1(2)、4、7

    九、板书设计

    jk251.cOm扩展阅读

    三角形的中位线初中教案精选


    教学建议

    知识结构

    重难点分析

    本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

    本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.

    教法建议

    1.对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

    2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

    教学设计示例

    一、教学目标

    1.掌握中位线的概念和三角形中位线定理

    2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

    3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

    4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

    5.通过一题多解,培养学生对数学的兴趣

    二、教学设计

    画图测量,猜想讨论,启发引导.

    三、重点、难点

    1.教学重点:三角形中位线的概论与三角形中位线性质.

    2.教学难点:三角形中位线定理的证明.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、常用画图工具

    六、教学步骤

    【复习提问】

    1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

    2.说明定理的证明思路.

    3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明?

    分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证,只要即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

    4.什么叫三角形中线?(以上复习用投影仪打出)

    【引入新课】

    1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

    (结合三角形中线的定义,让学生明确两者区别,可做一练习,在中,画出中线、中位线)

    2.三角形中位线性质

    了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

    如图所示,DE是的一条中位线,如果过D作,交AC于,那么根据平行线等分线段定理推论2,得是AC的中点,可见与DE重合,所以.由此得到:三角形中位线平行于第三边.同样,过D作,且DEFC,所以DE.因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

    三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

    应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

    由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

    (l)延长DE到F,使,连结CF,由可得ADFC.

    (2)延长DE到F,使,利用对角线互相平分的四边形是平行四边形,可得ADFC.

    (3)过点C作,与DE延长线交于F,通过证可得ADFC.

    上面通过三种不同方法得出ADFC,再由得BDFC,所以四边形DBCF是平行四边形,DFBC,又因DE,所以DE.

    (证明过程略)

    例求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

    (由学生根据命题,说出已知、求证)

    已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

    求证:四边形EFGH是平行四边形.‘

    分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

    证明:连结AC.

    ∴(三角形中位线定理).

    同理,

    ∴GHEF

    ∴四边形EFGH是平行四边形.

    【小结】

    1.三角形中位线及三角形中位线与三角形中线的区别.

    2.三角形中位线定理及证明思路.

    七、布置作业

    教材P188中1(2)、4、7

    九、板书设计

    经典初中教案三角形的中位线


    教学目标

    1.理解三角形中位线的概念,掌握它的性质及初步应用.

    2.通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.

    教学重点与难点

    重点是三角形中位线的性质定理.

    难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用.

    教学过程设计

    一、联想,提出问题.

    1.(投影)复习平行线等分线段定理及两个推论(图4-89).

    (1)请同学叙述定理及推论的内容.

    (2)用数学表态式叙述图4-89(c)中的结论.

    已知在ΔABC中,D为AB中点,DE∥BC,则AE=EC.

    2.逆向思维,探索新结论.

    引导学生思考:在图4-90中,反过来,若D,E分别为AB,AC中点,DE与BC有什么位置和数量关系呢?

    启发学生逆向类比猜想:DE∥BC(逆向联想),DE=BC(因为AD=AB,AE=AC,类比联想ΔADE的第三边DE与ΔABC的第三边也存在相同的倍数关系).

    由此引出课题.

    二、证明猜想,形成定理

    1.定义三角形的中位线,强调它与三角形的中线的区别.

    2.证明上述猜想成立,教师重点分析辅助线的作法的思考过程.

    教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法.教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法.

    3.板书一种证明过程.

    4.将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容.

    三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.

    5.分析定理成立的条件、结论及作用.

    条件:连结两边中点得到中位线.

    结论有两个,即位置关系和数量关系,根据题目需要选用.

    作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.

    三、应用举例、变式练习

    (投影)例1(直线给出图4-90的问题)根据图4-91中的条件,回答问题.

    (1)已知:如图4-91(a),D,E分别为AB和AC的中点DE=5.BC;

    (2)如图4-91(b),D,E,F分别为AB,AC,BC中点,AC=8,∠C=70°,求DF和∠EDF;

    (3)如图4-91(c),①它包含几个图4-90这样的基本图形?②哪些三角形全等?③有几个平行四边形?④若ΔDEF周长为10cm,求ΔABC的周长.⑤若ΔABC的面积等于20cm2,求ΔDEF的面积.⑥AF与DE有何关系?怎样用语言叙述这结论?

    分析:

    (1)可利用复合投影片实现三个图的叠加过程,以提高课堂效益并帮助学生建立分解基本图形的思想.

    (2)通过此题总结:三角形三和中位线围成的三角形的周长等于原三角形周长的一半,面积等于原三角形面积的14.这个过程可以无限进行下去,如图4-92.

    (3)从解题过程可以得到:三角形的一条中位线(DE)与第三边上的中线(AF)互相平分.

    (板书)例2(包含图4-90的问题)如图4-93,AD是ΔABC的高,M,N和E分别为AB,AC,BC的中点.求证:(1)四边形MNDE为等腰梯形;(2)∠MEN=∠MDN.

    分析:

    (1)由条件分析,图中可分解出“AD是ΔABC的高”,“三角形的中位线是MN,ME,NE”,“直角三角形斜边上中线MD,ND”.想一想,这些基本图形都有什么性质?

    (2)从结论出发,要证四边形MEDN是等腰梯形,只需证MN∥DE,且MN≠DE及以下三种情况之一成立:①ME=ND;②MD=EN;③∠EMN=∠DNM.从而证得结论成立.

    让学生口述,教师板书证明过程.

    例3构造图4-90问题.

    (1)求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形;

    (2)若已知四边形为特殊四边形呢?

    已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形.

    分析:

    (1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形.

    (2)让学生画图观察并思考此题的特殊情况,如图4-95,顺次连结各种特殊四边形中点得到什么图形?

    投影显示:

    四、师生共同小结

    1.教师提问引起学生思考:

    (1)这节课学习了哪些具体内容:

    (2)用什么思维方法提出猜想的?

    (3)应注意哪些概念之间的区别?

    2.在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基

    本图形(如图4-96).

    (1)注意三角形中线与中位线的区别,图4-96(a),(b).

    (2)三角线的中位线的判定方法有两种:定义及判定定理,图4-96(b),(。).

    (3)证明线段倍分关系的方法常有三种,图4-96(b),(d),().

    3.先猜想后证明的研究问题方法;逆向思维,探究逆命题是否成立,由此经常得到一些好

    的结论;添辅助线构造基本图形来使用性质的解题方法.

    4.三角形的中位线有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节

    课作思维上的准备)

    五、作业

    课本第180页第4题,第184页第5,7,8题,第185页B组第1题.

    补充题:(构造三角形的中位线)

    1.如图4-97,AD是上ABC的外角平分线,CD上AD于D.E是BC的中点.求证:(1)DE∥/AB:(2)DE=(AB+AC).

    (提示:延长CD交BA延长线于F.)

    2.如图4-98,正方形ABCD对角线交于点O,E是BO中点,连结”并延长交BC于F.求证:BF=CF.(提示:作OG∥EF交于BC于G.)

    3.如图4-99,在四边形ABCD中,AB=CD,E,F分别是AD,BC的中点,延长BA和CD分别交FE的延长线于G,H点.求证:∠BGF=∠CHF.(提示:连结AC,取AC中声、M,连结EM,FM.)

    课堂教学设计说明

    本教学过程设计需1课时完成.

    1.本节课的设计,力求让学生通过逆向思维及类比联想自己实践“分析——猜想——证

    明”的过程.变被动接受知识为主动应用已有知识,探索新知识,获得成功的喜悦.

    2.在应用性质定理时,通过一组层次递进的变式题的训练,由直接给出定理的基本图形

    到包含基本图形,学生分解图形后使用性质,再到通过添加辅助线构造基本图形来使用性质,

    学生逐步学会运用性质来解决问题,他们的解题能力、思考问题的方法得到逐步提高

    数学教案-三角形的中位线教案模板


    教学目标

    1.理解三角形中位线的概念,掌握它的性质及初步应用.

    2.通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.

    教学重点与难点

    重点是三角形中位线的性质定理.

    难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用.

    教学过程设计

    一、联想,提出问题.

    1.(投影)复习平行线等分线段定理及两个推论(图4-89).

    (1)请同学叙述定理及推论的内容.

    (2)用数学表态式叙述图4-89(c)中的结论.

    已知在ΔABC中,D为AB中点,DE∥BC,则AE=EC.

    2.逆向思维,探索新结论.

    引导学生思考:在图4-90中,反过来,若D,E分别为AB,AC中点,DE与BC有什么位置和数量关系呢?

    启发学生逆向类比猜想:DE∥BC(逆向联想),DE=BC(因为AD=AB,AE=AC,类比联想ΔADE的第三边DE与ΔABC的第三边也存在相同的倍数关系).

    由此引出课题.

    二、证明猜想,形成定理

    1.定义三角形的中位线,强调它与三角形的中线的区别.

    2.证明上述猜想成立,教师重点分析辅助线的作法的思考过程.

    教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法.教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法.

    3.板书一种证明过程.

    4.将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容.

    三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.

    5.分析定理成立的条件、结论及作用.

    条件:连结两边中点得到中位线.

    结论有两个,即位置关系和数量关系,根据题目需要选用.

    作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.

    三、应用举例、变式练习

    (投影)例1(直线给出图4-90的问题)根据图4-91中的条件,回答问题.

    (1)已知:如图4-91(a),D,E分别为AB和AC的中点DE=5.BC;

    (2)如图4-91(b),D,E,F分别为AB,AC,BC中点,AC=8,∠C=70°,求DF和∠EDF;

    (3)如图4-91(c),①它包含几个图4-90这样的基本图形?②哪些三角形全等?③有几个平行四边形?④若ΔDEF周长为10cm,求ΔABC的周长.⑤若ΔABC的面积等于20cm2,求ΔDEF的面积.⑥AF与DE有何关系?怎样用语言叙述这结论?

    分析:

    (1)可利用复合投影片实现三个图的叠加过程,以提高课堂效益并帮助学生建立分解基本图形的思想.

    (2)通过此题总结:三角形三和中位线围成的三角形的周长等于原三角形周长的一半,面积等于原三角形面积的14.这个过程可以无限进行下去,如图4-92.

    (3)从解题过程可以得到:三角形的一条中位线(DE)与第三边上的中线(AF)互相平分.

    (板书)例2(包含图4-90的问题)如图4-93,AD是ΔABC的高,M,N和E分别为AB,AC,BC的中点.求证:(1)四边形MNDE为等腰梯形;(2)∠MEN=∠MDN.

    分析:

    (1)由条件分析,图中可分解出“AD是ΔABC的高”,“三角形的中位线是MN,ME,NE”,“直角三角形斜边上中线MD,ND”.想一想,这些基本图形都有什么性质?

    (2)从结论出发,要证四边形MEDN是等腰梯形,只需证MN∥DE,且MN≠DE及以下三种情况之一成立:①ME=ND;②MD=EN;③∠EMN=∠DNM.从而证得结论成立.

    让学生口述,教师板书证明过程.

    例3构造图4-90问题.

    (1)求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形;

    (2)若已知四边形为特殊四边形呢?

    已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形.

    分析:

    (1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形.

    (2)让学生画图观察并思考此题的特殊情况,如图4-95,顺次连结各种特殊四边形中点得到什么图形?

    投影显示:

    四、师生共同小结

    1.教师提问引起学生思考:

    (1)这节课学习了哪些具体内容:

    (2)用什么思维方法提出猜想的?

    (3)应注意哪些概念之间的区别?

    2.在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基

    本图形(如图4-96).

    (1)注意三角形中线与中位线的区别,图4-96(a),(b).

    (2)三角线的中位线的判定方法有两种:定义及判定定理,图4-96(b),(。).

    (3)证明线段倍分关系的方法常有三种,图4-96(b),(d),().

    3.先猜想后证明的研究问题方法;逆向思维,探究逆命题是否成立,由此经常得到一些好

    的结论;添辅助线构造基本图形来使用性质的解题方法.

    4.三角形的中位线有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节

    课作思维上的准备)

    五、作业

    课本第180页第4题,第184页第5,7,8题,第185页B组第1题.

    补充题:(构造三角形的中位线)

    1.如图4-97,AD是上ABC的外角平分线,CD上AD于D.E是BC的中点.求证:(1)DE∥/AB:(2)DE=(AB+AC).

    (提示:延长CD交BA延长线于F.)

    2.如图4-98,正方形ABCD对角线交于点O,E是BO中点,连结”并延长交BC于F.求证:BF=CF.(提示:作OG∥EF交于BC于G.)

    3.如图4-99,在四边形ABCD中,AB=CD,E,F分别是AD,BC的中点,延长BA和CD分别交FE的延长线于G,H点.求证:∠BGF=∠CHF.(提示:连结AC,取AC中声、M,连结EM,FM.)

    课堂教学设计说明

    本教学过程设计需1课时完成.

    1.本节课的设计,力求让学生通过逆向思维及类比联想自己实践“分析——猜想——证

    明”的过程.变被动接受知识为主动应用已有知识,探索新知识,获得成功的喜悦.

    2.在应用性质定理时,通过一组层次递进的变式题的训练,由直接给出定理的基本图形

    到包含基本图形,学生分解图形后使用性质,再到通过添加辅助线构造基本图形来使用性质,

    学生逐步学会运用性质来解决问题,他们的解题能力、思考问题的方法得到逐步提高.

    三角形全等的判定相关教学方案


    课题:三角形全等的判定(三)

    教学目标:

    1、知识目标:

    (1)掌握已知三边画三角形的方法;

    (2)掌握边边边公理,能用边边边公理证明两个三角形全等;

    (3)会添加较明显的辅助线.

    2、能力目标:

    (1)通过尺规作图使学生得到技能的训练;

    (2)通过公理的初步应用,初步培养学生的逻辑推理能力.

    3、情感目标:

    (1)在公理的形成过程中渗透:实验、观察、归纳;

    (2)通过变式训练,培养学生“举一反三”的学习习惯.

    教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

    教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

    教学用具:直尺,微机

    教学方法:自学辅导

    教学过程:

    1、新课引入

    投影显示

    问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

    这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

    2、公理的获得

    问:通过上面问题的分析,满足什么条件的两个三角形全等?

    让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

    公理:有三边对应相等的两个三角形全等。

    应用格式:(略)

    强调说明:

    (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

    (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

    (3)、此公理与前面学过的公理区别与联系

    (4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

    (5)说明AAA与SSA不能判定三角形全等。

    3、公理的应用

    (1)讲解例1。学生分析完成,教师注重完成后的点评。

    例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

    求证:AD⊥BC

    分析:(设问程序)

    (1)要证AD⊥BC只要证什么?

    (2)要证∠1=只要证什么?

    (3)要证∠1=∠2只要证什么?

    (4)△ABD和△ACD全等的条件具备吗?依据是什么?

    证明:(略)

    (2)讲解例2(投影例2)

    例2已知:如图AB=DC,AD=BC

    求证:∠A=∠C

    (1)学生思考、分析、讨论,教师巡视,适当参与讨论。

    (2)找学生代表口述证明思路。

    思路1:连接BD(如图)

    证△ABD≌△CDB(SSS)先得∠A=∠C

    思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

    (3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

    例3如图,已知AB=AC,DB=DC

    (1)若E、F、G、H分别是各边的中点,求证:EH=FG

    (2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

    学生思考、分析,适当点拨,找学生代表口述证明思路

    让学生在练习本上写出证明,然后选择投影显示。

    证明:(略)

    说明:证直线垂直可证两直线夹角等于,而由两邻补角相等证两直线的夹角等于,又是很重要的一种方法。

    例4如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,

    求证:AC=2AE.

    证明:(略)

    学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

    5、课堂小结:

    (1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)

    在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

    (2)三种方法的综合运用

    让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

    6、布置作业:

    a、书面作业P70#11、12

    b、上交作业P70#14P71B组3

    板书设计:

    全等三角形的教学方案


    课题:

    教学目标:

    1、知识目标:

    (1)知道什么是全等形、及的对应元素;

    (2)知道的性质,能用符号正确地表示两个三角形全等;

    (3)能熟练找出两个的对应角、对应边。

    2、能力目标:

    (1)通过角有关概念的学习,提高学生数学概念的辨析能力;

    (2)通过找出的对应元素,培养学生的识图能力。

    3、情感目标:

    (1)通过感受的对应美激发学生热爱科学勇于探索的精神;

    (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

    教学重点:的性质。

    教学难点:找的对应边、对应角

    教学用具:直尺、微机

    教学方法:自学辅导式

    教学过程:

    1、全等形及概念的引入

    (1)动画(几何画板)显示:

    问题:你能发现这两个三角形有什么美妙的关系吗?

    一般学生都能发现这两个三角形是完全重合的。

    (2)学生自己动手

    画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

    (3)获取概念

    让学生用自己的语言叙述:

    、对应顶点、对应角以及有关数学符号。

    2、性质的发现:

    (1)电脑动画显示:

    问题:对应边、对应角有何关系?

    由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

    3、找对应边、对应角以及性质的应用

    (1)投影显示题目:

    D、AD∥BC,且AD=BC

    分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

    说明:本题的解题关键是要知道中两个中,对应顶点定在对应的位置上,易错点是容易找错对应角。

    分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

    说明:根据位置元素来找:有相等元素,其即为对应元素:

    然后依据已知的对应元素找:(1)对应角所对的边是对应边,两个对应角所夹的边是对应边(2)对应边所对的角是对应角,两条对应边所夹的角是对应角。

    说明:利用“运动法”来找

    翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

    旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

    平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

    求证:AE∥CF

    分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

    ∴AE∥CF

    说明:解此题的关键是找准对应角,可以用平移法。

    分析:AB不是的对应边,

    但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

    可利用已知的AD与BC求得。

    说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

    (2)题目的解决

    这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

    投影显示:

    (1)对应角所对的边是对应边,两个对应角所夹的边是对应边;

    (2)对应边所对的角是对应角,两条对应边所夹的角是对应角;

    (3)有公共边的,公共边一定是对应边;

    (4)有公共角的,角一定是对应角;

    (5)有对顶角的,对顶角一定是对应角;

    两个中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

    4、课堂独立练习,巩固提高

    此练习,主要加强学生的识图能力,同时,找准的对应边、对应角,是以后学好几何的关键。

    5、小结:

    (1)如何找的对应边、对应角(基本方法)

    (2)的性质

    (3)性质的应用

    让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

    6、布置作业

    a.书面作业P55#2、3、4

    b.上交作业(中考题)

    思考题:

    板书设计:

    探究活动

    (2)证明:AF∥DE

    三角形的内切圆相关教学方案


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.

    难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.

    2、教学建议

    本节内容需要一个课时.

    (1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;

    (2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.

    教学目标:

    1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;

    2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;

    3、激发学生动手、动脑主动参与课堂教学活动.

    教学重点:

    三角形内切圆的作法和三角形的内心与性质.

    教学难点:

    三角形内切圆的作法和三角形的内心与性质.

    教学活动设计

    (一)提出问题

    1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?

    2、分析、研究问题:

    让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.

    3、解决问题:

    例1作圆,使它和已知三角形的各边都相切.

    引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.

    提出以下几个问题进行讨论:

    ①作圆的关键是什么?

    ②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?

    ③这样的点I应在什么位置?

    ④圆心I确定后半径如何找.

    A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.

    完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个.

    (二)类比联想,学习新知识.

    1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.

    2、类比:

    名称

    确定方法

    图形

    性质

    外心(三角形外接圆的圆心)

    三角形三边中垂线的交点

    (1)OA=OB=OC;

    (2)外心不一定在三角形的内部.

    内心(三角形内切圆的圆心)

    三角形三条角平分线的交点

    (1)到三边的距离相等;

    (2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;

    (3)内心在三角形内部.

    3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.

    4、概念理解:

    引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.

    第12页

    相似三角形相关教学方案


    教学建议

    知识结构

    本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理

    重难点分析

    的概念是本节的重点也是本节的难点.是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性.对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误.

    教法建议

    1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念

    2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念

    3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识

    4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解

    5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解

    6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握

    教学设计示例

    一、教学目标

    1.使学生理解并掌握的概念,理解相似比的概念.

    2.使学生掌握预备定理,并了解它的承上启下的作用.

    3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.

    4.通过学习,培养由特殊到一般的唯物辩证法观点.

    二、教学设计

    类比学习、探索发现.

    三、重点、难点

    1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识.

    2.教学难点:是相似比的概念及找对应边.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、常用画图工具.

    六、教学步骤

    【复习提问】

    1.什么叫做全等三角形?它在形状上、大小上有何特征?

    2.两个全等三角形的对应也和对应角有什么关系?

    【讲解新课】

    1.

    的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.

    定义:对应角相等,对应边成比例的三角形,叫做

    符号“∽”,读作:“相似于”,记作:∽,如图所示.

    ∴∽

    反之亦然.即对应角相等,对应边成比例(性质).

    ∵∽,

    另外,具有传递性(性质).

    注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.

    思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?

    (2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?

    2.相似比的概念

    对应边的比K,叫做相似比(或相似系数).

    注:①两个的相似比具有顺序性.

    如果与的相似比是K,那么与的相似比是.

    ②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形.

    3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.∽,如图所示.

    教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:

    (1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.

    (2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成BC截两边所得,其中,本质上与右图是一致的.

    (3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现的错误,如出现错误,教师要及时予以纠正.

    (4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.

    (5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有.

    【小结】

    1.本节学习了的概念.

    2.正确理解相似比的概念,为以后学习的性质打下基础.

    3.重点学习了预备定理及注意的问题.

    七、布置作业

    教材P238中2,3.

    八、板书设计

    相似三角形


    教学建议

    知识结构

    本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理

    重难点分析

    的概念是本节的重点也是本节的难点.是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性.对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误.

    教法建议

    1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念

    2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念

    3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识

    4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解

    5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解

    6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握

    教学设计示例

    一、教学目标

    1.使学生理解并掌握的概念,理解相似比的概念.

    2.使学生掌握预备定理,并了解它的承上启下的作用.

    3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.

    4.通过学习,培养由特殊到一般的唯物辩证法观点.

    二、教学设计

    类比学习、探索发现.

    三、重点、难点

    1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识.

    2.教学难点:是相似比的概念及找对应边.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、常用画图工具.

    六、教学步骤

    【复习提问】

    1.什么叫做全等三角形?它在形状上、大小上有何特征?

    2.两个全等三角形的对应也和对应角有什么关系?

    【讲解新课】

    1.

    的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.

    定义:对应角相等,对应边成比例的三角形,叫做

    符号“∽”,读作:“相似于”,记作:∽,如图所示.

    ∴∽

    反之亦然.即对应角相等,对应边成比例(性质).

    ∵∽,

    另外,具有传递性(性质).

    注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.

    思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?

    (2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?

    2.相似比的概念

    对应边的比K,叫做相似比(或相似系数).

    注:①两个的相似比具有顺序性.

    如果与的相似比是K,那么与的相似比是.

    ②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形.

    3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.∽,如图所示.

    教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:

    (1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.

    (2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成BC截两边所得,其中,本质上与右图是一致的.

    (3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现的错误,如出现错误,教师要及时予以纠正.

    (4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.

    (5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有.

    【小结】

    1.本节学习了的概念.

    2.正确理解相似比的概念,为以后学习的性质打下基础.

    3.重点学习了预备定理及注意的问题.

    七、布置作业

    教材P238中2,3.

    八、板书设计

    【三角形的中位线相关教学方案】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...