你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >直角三角形全等的判定相关教学方案
  • 直角三角形全等的判定相关教学方案

    发表时间:2022-02-03

    【www.jk251.com - 直角三角形全等的判定】

    提起教案,我相信大家都不陌生,做好教案有利于教学活动的开展,在教案中总结好经验与教训,我们才能逐步成熟起来。写初中教案要注意哪些方面呢?下面是小编特地为大家整理的“直角三角形全等的判定相关教学方案”。

    教学建议

    知识结构

    重点与难点分析:

    本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

    (1)由“先教后学”转向“先学后教

    本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

    (2)在层次教学中培养学生的思维能力

    本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

    公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

    综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

    教法建议:

    由“先教后学”转向“先学后教”

    本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

    (2)在层次教学中培养学生的思维能力

    本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

    公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

    综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

    教学目标:

    1、知识目标:

    (1)掌握已知斜边、直角边画直角三角形的画图方法;

    (2)掌握斜边、直角边公理;

    (3)能够运用HL公理及其他三角形全等的判定方法进行证明和计算.

    2、能力目标:

    (1)通过尺规作图使学生得到技能的训练;

    (2)通过公理的初步应用,初步培养学生的逻辑推理能力.

    3、情感目标:

    (1)在公理的形成过程中渗透:实验、观察、归纳;

    (2)通过知识的纵横迁移感受数学的系统特征。

    教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

    教学难点:灵活应用五种方法(SAS、ASA、AAS、SSS、HL)来判定直角三角形全等。

    教学用具:直尺,微机

    教学方法:自学辅导

    教学过程:

    1、新课引入

    投影显示

    问题:判定三角形全等的方法有四种,若这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?

    这个问题让学生思考分析讨论后回答,教师补充完善。

    2、公理的获得

    让学生概括出HL公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

    公理:有斜边和一条直角边对应相等的两个直角三角形全等。

    应用格式:(略)

    强调说明:

    (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

    (2)、判定两个直角三角形全等的方法。

    (3)特殊三角形研究思想。

    3、公理的应用

    (1)讲解例1(投影例1)

    例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。

    学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。

    分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。

    证明:(略)

    (2)讲解例2。学生分析完成,教师注重完成后的点评。)

    例2:如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.

    求证:BE=CF

    分析:BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF

    证明:(略)

    (3)讲解例3(投影例3)

    例3:如图3,已知△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:

    (1)BD=DE+CE

    (2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明;

    (3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明

    学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。

    4、课堂小结:

    (1)判定直角三角形全等的方法:5个(SAS、ASA、AAS、SSS、HL)在这些方法的条件中都至少包含一条边。

    (2)直角三角形判定方法的综合运用

    让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

    5、布置作业:

    a、书面作业P79#7、9

    b、上交作业P80#5、6

    板书设计:

    探究活动

    直角形全等的判定

    如图(1)A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,

    若AB=CD求证:BD平分EF。若将△DEC的边EC沿AC方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。

    Jk251.com相关文章推荐

    直角三角形全等的判定教学设计


    〖教学目标〗

    ◆1、探索两个直角三角形全等的条件.

    ◆2、掌握两个直角三角形全等的条件(hl).

    ◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.

    〖教学重点与难点〗

    ◆教学重点:直角三角形全等的判定的方法“hl”.

    ◆教学难点:直角三角形判定方法的说理过程.

    〖教学过程〗

    一、创设情境,引入新课:

    教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?

    二、合作学习:

    (1)回顾:判定两个直角三角形全等已经有哪些方法?

    (2)有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。

    教师归纳出方法后,要学生注意两点:“hl”是仅适用于rt△的特殊方法。

    应用“hl”时,虽只有两个条件,但必须先有两个rt△的条件

    (3)教师引导、学生练习p47

    三、应用新知,巩固概念

    例题讲评

    例:已知:p是∠aob内一点,pd⊥oa,pe⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。

    分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop

    小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)

    角的内部,到角的两边距离相等的点,在这个角的平分线上。

    四、学生练习,巩固提高

    练一练:p481.2.p493

    五、小结回顾,反思提高

    (1)本节内容学的是什么?你认为学习本节内容应注意些什么?

    (2)学习本节内容你有哪些体会?

    (3)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)

    (4)你现在知道的有关角平分线的知识有哪些?

    六、布置作业:

    直角三角形全等的判定的教学方案


    教学建议

    知识结构

    重点与难点分析:

    本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

    (1)由“先教后学”转向“先学后教

    本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

    (2)在层次教学中培养学生的思维能力

    本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

    公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

    综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

    教法建议:

    由“先教后学”转向“先学后教”

    本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

    (2)在层次教学中培养学生的思维能力

    本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

    公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

    综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

    教学目标:

    1、知识目标:

    (1)掌握已知斜边、直角边画直角三角形的画图方法;

    (2)掌握斜边、直角边公理;

    (3)能够运用HL公理及其他三角形全等的判定方法进行证明和计算.

    2、能力目标:

    (1)通过尺规作图使学生得到技能的训练;

    (2)通过公理的初步应用,初步培养学生的逻辑推理能力.

    3、情感目标:

    (1)在公理的形成过程中渗透:实验、观察、归纳;

    (2)通过知识的纵横迁移感受数学的系统特征。

    教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

    教学难点:灵活应用五种方法(SAS、ASA、AAS、SSS、HL)来判定直角三角形全等。

    教学用具:直尺,微机

    教学方法:自学辅导

    教学过程:

    1、新课引入

    投影显示

    问题:判定三角形全等的方法有四种,若这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?

    这个问题让学生思考分析讨论后回答,教师补充完善。

    2、公理的获得

    让学生概括出HL公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

    公理:有斜边和一条直角边对应相等的两个直角三角形全等。

    应用格式:(略)

    强调说明:

    (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

    (2)、判定两个直角三角形全等的方法。

    (3)特殊三角形研究思想。

    3、公理的应用

    (1)讲解例1(投影例1)

    例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。

    学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。

    分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。

    证明:(略)

    (2)讲解例2。学生分析完成,教师注重完成后的点评。)

    例2:如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.

    求证:BE=CF

    分析:BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF

    证明:(略)

    (3)讲解例3(投影例3)

    例3:如图3,已知△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:

    (1)BD=DE+CE

    (2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明;

    (3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明

    学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。

    4、课堂小结:

    (1)判定直角三角形全等的方法:5个(SAS、ASA、AAS、SSS、HL)在这些方法的条件中都至少包含一条边。

    (2)直角三角形判定方法的综合运用

    让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

    5、布置作业:

    a、书面作业P79#7、9

    b、上交作业P80#5、6

    板书设计:

    探究活动

    直角形全等的判定

    如图(1)A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,

    若AB=CD求证:BD平分EF。若将△DEC的边EC沿AC方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。

    【直角三角形全等的判定相关教学方案】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...