你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >勾股定理相关教学方案
  • 勾股定理相关教学方案

    发表时间:2022-02-02

    无论何时,教案都是我们准备教学的一种最好的方式,一篇好的教案需要我们精心构思,初中老师经常会为写教案感到苦恼,初中教案应该从哪方面来写呢?本站收集了《勾股定理相关教学方案》,供您参考。

    教学目标:

    1、知识目标:

    (1)掌握;

    (2)学会利用进行计算、证明与作图;

    (3)了解有关的历史.

    2、能力目标:

    (1)在定理的证明中培养学生的拼图能力;

    (2)通过问题的解决,提高学生的运算能力

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过有关的历史讲解,对学生进行德育教育.

    教学重点:及其应用

    教学难点:通过有关的历史讲解,对学生进行德育教育

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习

    (1)三角形的三边关系

    (2)问题:(投影显示)

    直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

    2、定理的获得

    让学生用文字语言将上述问题表述出来.

    :直角三角形两直角边的平方和等于斜边的平方

    强调说明:

    (1)勾――最短的边、股――较长的直角边、弦――斜边

    (2)学生根据上述学习,提出自己的问题(待定)

    学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

    3、定理的证明方法

    方法一:将四个全等的直角三角形拼成如图1所示的正方形.

    方法二:将四个全等的直角三角形拼成如图2所示的正方形,

    方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

    以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

    4、定理与逆定理的应用

    例1已知:如图,在△ABC中,∠ACB=,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.

    解:∵△ABC是直角三角形,AB=5,BC=3,由有

    ∴∠2=∠C

    ∴CD的长是2.4cm

    例2如图,△ABC中,AB=AC,∠BAC=,D是BC上任一点,

    求证:

    证法一:过点A作AE⊥BC于E

    则在Rt△ADE中,

    又∵AB=AC,∠BAC=

    ∴AE=BE=CE

    证法二:过点D作DE⊥AB于E,DF⊥AC于F

    则DE∥AC,DF∥AB

    又∵AB=AC,∠BAC=

    ∴EB=ED,FD=FC=AE

    在Rt△EBD和Rt△FDC中

    在Rt△AED中,

    第12页

    jK251.COm精选阅读

    勾股定理的教学方案


    教学目标:

    1、知识目标:

    (1)掌握;

    (2)学会利用进行计算、证明与作图;

    (3)了解有关的历史.

    2、能力目标:

    (1)在定理的证明中培养学生的拼图能力;

    (2)通过问题的解决,提高学生的运算能力

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过有关的历史讲解,对学生进行德育教育.

    教学重点:及其应用

    教学难点:通过有关的历史讲解,对学生进行德育教育

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习

    (1)三角形的三边关系

    (2)问题:(投影显示)

    直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

    2、定理的获得

    让学生用文字语言将上述问题表述出来.

    :直角三角形两直角边的平方和等于斜边的平方

    强调说明:

    (1)勾――最短的边、股――较长的直角边、弦――斜边

    (2)学生根据上述学习,提出自己的问题(待定)

    学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

    3、定理的证明方法

    方法一:将四个全等的直角三角形拼成如图1所示的正方形.

    方法二:将四个全等的直角三角形拼成如图2所示的正方形,

    方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

    以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

    4、定理与逆定理的应用

    例1已知:如图,在△ABC中,∠ACB=,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.

    解:∵△ABC是直角三角形,AB=5,BC=3,由有

    ∴∠2=∠C

    ∴CD的长是2.4cm

    例2如图,△ABC中,AB=AC,∠BAC=,D是BC上任一点,

    求证:

    证法一:过点A作AE⊥BC于E

    则在Rt△ADE中,

    又∵AB=AC,∠BAC=

    ∴AE=BE=CE

    证法二:过点D作DE⊥AB于E,DF⊥AC于F

    则DE∥AC,DF∥AB

    又∵AB=AC,∠BAC=

    ∴EB=ED,FD=FC=AE

    在Rt△EBD和Rt△FDC中

    在Rt△AED中,

    例3设

    求证:

    证明:构造一个边长的矩形ABCD,如图

    在Rt△ABE中

    在Rt△BCF中

    在Rt△DEF中

    在△BEF中,BE+EF>BF

    例4国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

    解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

    AD+AB+BC=3,AB+BC+CD=3

    图3中,在Rt△DGF中

    同理

    ∴图3中的路线长为

    图4中,延长EF交BC于H,则FH⊥BC,BH=CH

    由∠FBH=及得:

    EA=ED=FB=FC=

    ∴EF=1-2FH=1-

    ∴此图中总线路的长为4EA+EF=

    ∵3>2.828>2.732

    ∴图4的连接线路最短,即图4的架设方案最省电线.

    5、课堂小结:

    (1)的内容

    (2)的作用

    已知直角三角形的两边求第三边

    已知直角三角形的一边,求另两边的关系

    6、布置作业:

    a、书面作业P130#1、2、3

    b、上交作业P132#1、3

    板书设计:

    探究活动

    台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

    (1)该城市是否会受到这交台风的影响?请说明理由

    (2)若会受到台风影响,那么台风影响该城市持续时间有多少?

    (3)该城市受到台风影响的最大风力为几级?

    解:(1)由点A作AD⊥BC于D,

    则AD就为城市A距台风中心的最短距离

    在Rt△ABD中,∠B=,AB=220

    由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.

    故该城市会受到这次台风的影响.

    (2)由题意知,当A点距台风中心不超过60千米时,

    将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,

    该城市都会受到这次台风的影响

    由得

    ∴EF=2DE=

    因为这次台风中心以15千米/时的速度移动

    所以这次台风影响该城市的持续时间为小时

    (3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为级.

    勾股定理的逆定理的教学方案


    知识结构:


    重点、难点分析

    本节内容的重点是及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

    本节内容的难点是的应用.在用时,分不清哪一条边作斜边,因此在用判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

    教法建议:

    本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

    (1)让学生主动提出问题

    利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

    (2)让学生自己解决问题

    判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

    (3)通过实际问题的解决,培养学生的数学意识.

    教学目标:

    1、知识目标:

    (1)理解并会证明;

    (2)会应用判定一个三角形是否为直角三角形;

    (3)知道什么叫勾股数,记住一些觉见的勾股数.

    2、能力目标:

    (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

    (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过知识的纵横迁移感受数学的辩证特征.

    教学重点:及其应用

    教学难点:及其应用

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习(投影)

    勾股定理的内容

    文字叙述(投影显示)

    符号表述

    图形(画在黑板上)

    2、逆定理的获得

    (1)让学生用文字语言将上述定理的逆命题表述出来

    (2)学生自己证明

    逆定理:如果三角形的三边长有下面关系:

    那么这个三角形是直角三角形

    强调说明:(1)勾股定理及其逆定理的区别

    勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

    (2)判定直角三角形的方法:

    ①角为、②垂直、③

    2、定理的应用(投影显示题目上)

    例1如果一个三角形的三边长分别为

    则这三角形是直角三角形

    证明:∵

    ∵∠C=

    例2已知:如图,四边形ABCD中,∠B=,AB=3,BC=4,CD=12,AD=13求四边形ABCD的面积

    解:连结AC

    ∵∠B=,AB=3,BC=4

    ∴AC=5

    ∴∠ACD=

    例3如图,已知:CD⊥AB于D,且有

    求证:△ACB为直角三角形

    证明:∵CD⊥AB

    又∵

    ∴△ABC为直角三角形

    以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)

    4、课堂小结:

    (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

    (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用.

    5、布置作业:

    a、书面作业P131#9

    b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

    求证:△DEF是等腰三角形

    板书设计:

    探究活动

    分别以直角三角形三边为直径作三个半圆,这三个半圆的面积之间有什么关系?为什么?

    提示:设直角三角形边长分别为

    则三个半圆面积分别为

    切线长定理相关教学方案


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.

    难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.

    2、教法建议

    本节内容需要一个课时.

    (1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析的基本图形;对重要的结论及时总结;

    (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.

    教学目标

    1.理解切线长的概念,掌握;

    2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.

    3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.

    教学重点:

    是教学重点

    教学难点:

    的灵活运用是教学难点

    教学过程设计:

    (一)观察、猜想、证明,形成定理

    1、切线长的概念.

    如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.

    引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.

    2、观察

    利用电脑变动点P的位置,观察图形的特征和各量之间的关系.

    3、猜想

    引导学生直观判断,猜想图中PA是否等于PB.PA=PB.

    4、证明猜想,形成定理.

    猜想是否正确。需要证明.

    组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.

    想一想:根据图形,你还可以得到什么结论?

    ∠OPA=∠OPB(如图)等.

    :从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

    5、归纳:

    把前面所学的切线的5条性质与一起归纳切线的性质

    6、的基本图形研究

    如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C

    (1)写出图中所有的垂直关系;

    (2)写出图中所有的全等三角形;

    (3)写出图中所有的相似三角形;

    (4)写出图中所有的等腰三角形.

    说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.

    (二)应用、归纳、反思

    例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,

    A和B是切点,BC是直径.

    求证:AC∥OP.

    分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.

    从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.

    证法一.如图.连结AB.

    PA,PB分别切⊙O于A,B

    ∴PA=PB∠APO=∠BPO

    ∴OP⊥AB

    又∵BC为⊙O直径

    ∴AC⊥AB

    ∴AC∥OP(学生板书)

    证法二.连结AB,交OP于D

    PA,PB分别切⊙O于A、B

    ∴PA=PB∠APO=∠BPO

    ∴AD=BD

    又∵BO=DO

    ∴OD是△ABC的中位线

    ∴AC∥OP

    证法三.连结AB,设OP与AB弧交于点E

    PA,PB分别切⊙O于A、B

    ∴PA=PB

    ∴OP⊥AB

    ∴=

    ∴∠C=∠POB

    ∴AC∥OP

    反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.

    例2、圆的外切四边形的两组对边的和相等.

    (分析和解题略)

    反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.

    P120练习:

    练习1填空

    如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________

    练习2已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长.

    分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x,y,z的方程组,解方程组便可求出结果.

    (解略)

    反思:解这个题时,除了要用三角形内切圆的概念和之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.

    (三)小结

    1、提出问题学生归纳

    (1)这节课学习的具体内容;

    (2)学习用的数学思想方法;

    (3)应注意哪些概念之间的区别?

    2、归纳基本图形的结论

    3、学习了用代数方法解决几何问题的思想方法.

    (四)作业

    教材P131习题7.4A组1.(1),2,3,4.B组1题.

    探究活动

    图中找错

    你能找出(图1)与(图2)的错误所在吗?

    在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线.

    提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上.

    在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有

    a=P1A=P1P3+P3A=P1P3+c①

    c=P3C=P2P3+P3A=P2P3+b②

    a=P1B=P1P2+P2B=P1P2+b③

    将②代人①式得

    a=P1P3+(P2P3+b)=P1P3+P2P3+b,

    ∴a-b=P1P3+P2P3

    由③得a-b=P1P2得

    ∴P1P2=P2P3+P1P3

    ∴P1、P2、P3应重合,故图2是错误的.

    数学教案-勾股定理


    教学目标:

    1、知识目标:

    (1)掌握勾股定理;

    (2)学会利用勾股定理进行计算、证明与作图;

    (3)了解有关勾股定理的历史.

    2、能力目标:

    (1)在定理的证明中培养学生的拼图能力;

    (2)通过问题的解决,提高学生的运算能力

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过有关勾股定理的历史讲解,对学生进行德育教育.

    教学重点:勾股定理及其应用

    教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习

    (1)三角形的三边关系

    (2)问题:(投影显示)

    直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

    2、定理的获得

    让学生用文字语言将上述问题表述出来.

    勾股定理:直角三角形两直角边的平方和等于斜边的平方

    强调说明:

    (1)勾――最短的边、股――较长的直角边、弦――斜边

    (2)学生根据上述学习,提出自己的问题(待定)

    学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

    3、定理的证明方法

    方法一:将四个全等的直角三角形拼成如图1所示的正方形.

    方法二:将四个全等的直角三角形拼成如图2所示的正方形,

    方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

    以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

    4、定理与逆定理的应用

    例1已知:如图,在△ABC中,∠ACB=,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.

    解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有

    ∴∠2=∠C

    ∴CD的长是2.4cm

    例2如图,△ABC中,AB=AC,∠BAC=,D是BC上任一点,

    求证:

    证法一:过点A作AE⊥BC于E

    则在Rt△ADE中,

    又∵AB=AC,∠BAC=

    ∴AE=BE=CE

    证法二:过点D作DE⊥AB于E,DF⊥AC于F

    则DE∥AC,DF∥AB

    又∵AB=AC,∠BAC=

    ∴EB=ED,FD=FC=AE

    在Rt△EBD和Rt△FDC中

    在Rt△AED中,

    例3设

    求证:

    证明:构造一个边长的矩形ABCD,如图

    在Rt△ABE中

    在Rt△BCF中

    在Rt△DEF中

    在△BEF中,BE+EF>BF

    例4国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

    解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

    AD+AB+BC=3,AB+BC+CD=3

    图3中,在Rt△DGF中

    同理

    ∴图3中的路线长为

    图4中,延长EF交BC于H,则FH⊥BC,BH=CH

    由∠FBH=及勾股定理得:

    EA=ED=FB=FC=

    ∴EF=1-2FH=1-

    ∴此图中总线路的长为4EA+EF=

    ∵3>2.828>2.732

    ∴图4的连接线路最短,即图4的架设方案最省电线.

    5、课堂小结:

    (1)勾股定理的内容

    (2)勾股定理的作用

    已知直角三角形的两边求第三边

    已知直角三角形的一边,求另两边的关系

    6、布置作业:

    a、书面作业P130#1、2、3

    b、上交作业P132#1、3

    板书设计:

    探究活动

    台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

    (1)该城市是否会受到这交台风的影响?请说明理由

    (2)若会受到台风影响,那么台风影响该城市持续时间有多少?

    (3)该城市受到台风影响的最大风力为几级?

    解:(1)由点A作AD⊥BC于D,

    则AD就为城市A距台风中心的最短距离

    在Rt△ABD中,∠B=,AB=220

    由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.

    故该城市会受到这次台风的影响.

    (2)由题意知,当A点距台风中心不超过60千米时,

    将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,

    该城市都会受到这次台风的影响

    由勾股定理得

    ∴EF=2DE=

    因为这次台风中心以15千米/时的速度移动

    所以这次台风影响该城市的持续时间为小时

    (3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为级.

    经典初中教案勾股定理


    教学目标:

    1、知识目标:

    (1)掌握;

    (2)学会利用进行计算、证明与作图;

    (3)了解有关的历史.

    2、能力目标:

    (1)在定理的证明中培养学生的拼图能力;

    (2)通过问题的解决,提高学生的运算能力

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过有关的历史讲解,对学生进行德育教育.

    教学重点:及其应用

    教学难点:通过有关的历史讲解,对学生进行德育教育

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习

    (1)三角形的三边关系

    (2)问题:(投影显示)

    直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

    2、定理的获得

    让学生用文字语言将上述问题表述出来.

    :直角三角形两直角边的平方和等于斜边的平方

    强调说明:

    (1)勾――最短的边、股――较长的直角边、弦――斜边

    (2)学生根据上述学习,提出自己的问题(待定)

    学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

    3、定理的证明方法

    方法一:将四个全等的直角三角形拼成如图1所示的正方形.

    方法二:将四个全等的直角三角形拼成如图2所示的正方形,

    方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

    以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

    4、定理与逆定理的应用

    例1已知:如图,在△ABC中,∠ACB=,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.

    解:∵△ABC是直角三角形,AB=5,BC=3,由有

    ∴∠2=∠C

    ∴CD的长是2.4cm

    例2如图,△ABC中,AB=AC,∠BAC=,D是BC上任一点,

    求证:

    证法一:过点A作AE⊥BC于E

    则在Rt△ADE中,

    又∵AB=AC,∠BAC=

    ∴AE=BE=CE

    证法二:过点D作DE⊥AB于E,DF⊥AC于F

    则DE∥AC,DF∥AB

    又∵AB=AC,∠BAC=

    ∴EB=ED,FD=FC=AE

    在Rt△EBD和Rt△FDC中

    在Rt△AED中,

    例3设

    求证:

    证明:构造一个边长的矩形ABCD,如图

    在Rt△ABE中

    在Rt△BCF中

    在Rt△DEF中

    在△BEF中,BE+EF>BF

    例4国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

    解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

    AD+AB+BC=3,AB+BC+CD=3

    图3中,在Rt△DGF中

    同理

    ∴图3中的路线长为

    图4中,延长EF交BC于H,则FH⊥BC,BH=CH

    由∠FBH=及得:

    EA=ED=FB=FC=

    ∴EF=1-2FH=1-

    ∴此图中总线路的长为4EA+EF=

    ∵3>2.828>2.732

    ∴图4的连接线路最短,即图4的架设方案最省电线.

    5、课堂小结:

    (1)的内容

    (2)的作用

    已知直角三角形的两边求第三边

    已知直角三角形的一边,求另两边的关系

    6、布置作业:

    a、书面作业P130#1、2、3

    b、上交作业P132#1、3

    板书设计:

    探究活动

    台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

    (1)该城市是否会受到这交台风的影响?请说明理由

    (2)若会受到台风影响,那么台风影响该城市持续时间有多少?

    (3)该城市受到台风影响的最大风力为几级?

    解:(1)由点A作AD⊥BC于D,

    则AD就为城市A距台风中心的最短距离

    在Rt△ABD中,∠B=,AB=220

    由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.

    故该城市会受到这次台风的影响.

    (2)由题意知,当A点距台风中心不超过60千米时,

    将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,

    该城市都会受到这次台风的影响

    由得

    ∴EF=2DE=

    因为这次台风中心以15千米/时的速度移动

    所以这次台风影响该城市的持续时间为小时

    (3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为级.

    勾股定理的逆定理教案模板


    知识结构:

    重点、难点分析

    本节内容的重点是及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

    本节内容的难点是的应用.在用时,分不清哪一条边作斜边,因此在用判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

    教法建议:

    本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

    (1)让学生主动提出问题

    利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

    (2)让学生自己解决问题

    判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

    (3)通过实际问题的解决,培养学生的数学意识.

    教学目标:

    1、知识目标:

    (1)理解并会证明;

    (2)会应用判定一个三角形是否为直角三角形;

    (3)知道什么叫勾股数,记住一些觉见的勾股数.

    2、能力目标:

    (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

    (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过知识的纵横迁移感受数学的辩证特征.

    教学重点:及其应用

    教学难点:及其应用

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习(投影)

    勾股定理的内容

    文字叙述(投影显示)

    符号表述

    图形(画在黑板上)

    2、逆定理的获得

    (1)让学生用文字语言将上述定理的逆命题表述出来

    (2)学生自己证明

    逆定理:如果三角形的三边长有下面关系:

    那么这个三角形是直角三角形

    强调说明:(1)勾股定理及其逆定理的区别

    勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

    (2)判定直角三角形的方法:

    ①角为、②垂直、③

    2、定理的应用(投影显示题目上)

    例1如果一个三角形的三边长分别为

    则这三角形是直角三角形

    证明:∵

    ∵∠C=

    第12页

    勾股定理的逆定理初中教案精选


    知识结构:

    重点、难点分析

    本节内容的重点是及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

    本节内容的难点是的应用.在用时,分不清哪一条边作斜边,因此在用判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

    教法建议:

    本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

    (1)让学生主动提出问题

    利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

    (2)让学生自己解决问题

    判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

    (3)通过实际问题的解决,培养学生的数学意识.

    教学目标:

    1、知识目标:

    (1)理解并会证明;

    (2)会应用判定一个三角形是否为直角三角形;

    (3)知道什么叫勾股数,记住一些觉见的勾股数.

    2、能力目标:

    (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

    (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过知识的纵横迁移感受数学的辩证特征.

    教学重点:及其应用

    教学难点:及其应用

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习(投影)

    勾股定理的内容

    文字叙述(投影显示)

    符号表述

    图形(画在黑板上)

    2、逆定理的获得

    (1)让学生用文字语言将上述定理的逆命题表述出来

    (2)学生自己证明

    逆定理:如果三角形的三边长有下面关系:

    那么这个三角形是直角三角形

    强调说明:(1)勾股定理及其逆定理的区别

    勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

    (2)判定直角三角形的方法:

    ①角为、②垂直、③

    2、定理的应用(投影显示题目上)

    例1如果一个三角形的三边长分别为

    则这三角形是直角三角形

    证明:∵

    ∵∠C=

    例2已知:如图,四边形ABCD中,∠B=,AB=3,BC=4,CD=12,AD=13求四边形ABCD的面积

    解:连结AC

    ∵∠B=,AB=3,BC=4

    ∴AC=5

    ∴∠ACD=

    例3如图,已知:CD⊥AB于D,且有

    求证:△ACB为直角三角形

    证明:∵CD⊥AB

    又∵

    ∴△ABC为直角三角形

    以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)

    4、课堂小结:

    (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

    (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用.

    5、布置作业:

    a、书面作业P131#9

    b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

    求证:△DEF是等腰三角形

    板书设计:

    探究活动

    分别以直角三角形三边为直径作三个半圆,这三个半圆的面积之间有什么关系?为什么?

    提示:设直角三角形边长分别为

    则三个半圆面积分别为

    数学教案-平行线等分线定理相关教学方案


    教学建议

    1.平行线等分线段定理

    定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.

    注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.

    定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.

    2.平行线等分线段定理的推论

    推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

    推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

    记忆方法:“中点”+“平行”得“中点”.

    推论的用途:(1)平分已知线段;(2)证明线段的倍分.

    重难点分析

    本节的重点是平行线等分线段定理.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.

    本节的难点也是平行线等分线段定理.由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.

    教法建议

    平行线等分线段定理的引入

    生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:

    ①从生活实例引入,如刻度尺、作业本、栅栏、等等;

    ②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论.

    教学设计示例

    一、教学目标

    1.使学生掌握平行线等分线段定理及推论.

    2.能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力.

    3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.

    4.通过本节学习,体会图形语言和符号语言的和谐美

    二、教法设计

    学生观察发现、讨论研究,教师引导分析

    三、重点、难点

    1.教学重点:平行线等分线段定理

    2.教学难点:平行线等分线段定理

    四、课时安排

    l课时

    五、教具学具

    计算机、投影仪、胶片、常用画图工具

    六、师生互动活动设计

    教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

    七、教学步骤

    【复习提问】

    1.什么叫平行线?平行线有什么性质.

    2.什么叫平行四边形?平行四边形有什么性质?

    【引入新课】

    由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?

    (引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)

    平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.

    注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.

    下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).

    已知:如图,直线,.

    求证:.

    分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论.

    (引导学生找出另一种证法)

    分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.

    证明:过点作分别交、于点、,得和,如图.

    ∵,

    又∵,,

    为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).

    引导学生观察下图,在梯形中,,,则可得到,由此得出推论1.

    推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

    再引导学生观察下图,在中,,,则可得到,由此得出推论2.

    推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.

    注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.

    接下来讲如何利用平行线等分线段定理来任意等分一条线段.

    例已知:如图,线段.

    求作:线段的五等分点.

    作法:①作射线.

    ②在射线上以任意长顺次截取.

    ③连结.

    ④过点.、、分别作的平行线、、、,分别交于点、、、.

    、、、就是所求的五等分点.

    (说明略,由学生口述即可)

    【总结、扩展】

    小结:

    (l)平行线等分线段定理及推论.

    (2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.

    (3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.

    (4)应用定理任意等分一条线段.

    八、布置作业

    教材P188中A组2、9

    九、板书设计

    切线长定理的教学方案


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.

    难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.

    2、教法建议

    本节内容需要一个课时.

    (1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析的基本图形;对重要的结论及时总结;

    (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.

    教学目标

    1.理解切线长的概念,掌握;

    2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.

    3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.

    教学重点:

    是教学重点

    教学难点:

    的灵活运用是教学难点

    教学过程设计:

    (一)观察、猜想、证明,形成定理

    1、切线长的概念.

    如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.

    引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.

    2、观察

    利用电脑变动点P的位置,观察图形的特征和各量之间的关系.

    3、猜想

    引导学生直观判断,猜想图中PA是否等于PB.PA=PB.

    4、证明猜想,形成定理.

    猜想是否正确。需要证明.

    组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.

    想一想:根据图形,你还可以得到什么结论?

    ∠OPA=∠OPB(如图)等.

    :从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

    5、归纳:

    把前面所学的切线的5条性质与一起归纳切线的性质

    6、的基本图形研究

    如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C

    (1)写出图中所有的垂直关系;

    (2)写出图中所有的全等三角形;

    (3)写出图中所有的相似三角形;

    (4)写出图中所有的等腰三角形.

    说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.

    (二)应用、归纳、反思

    例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,

    A和B是切点,BC是直径.

    求证:AC∥OP.

    分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.

    从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.

    证法一.如图.连结AB.

    PA,PB分别切⊙O于A,B

    ∴PA=PB∠APO=∠BPO

    ∴OP⊥AB

    又∵BC为⊙O直径

    ∴AC⊥AB

    ∴AC∥OP(学生板书)

    证法二.连结AB,交OP于D

    PA,PB分别切⊙O于A、B

    ∴PA=PB∠APO=∠BPO

    ∴AD=BD

    又∵BO=DO

    ∴OD是△ABC的中位线

    ∴AC∥OP

    证法三.连结AB,设OP与AB弧交于点E

    PA,PB分别切⊙O于A、B

    ∴PA=PB

    ∴OP⊥AB

    ∴=

    ∴∠C=∠POB

    ∴AC∥OP

    反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.

    第12页

    相关教学方案


    教学目标

    1.使学生知道我国气候的主要特征,学会分析气候特征的方法,明确我国丰富的气候资源为发展农业生产提供了有利条件。

    2.使学生能联系实际,说明气候对生产和生活的影响。

    3.从气候与人类活动的关系中,使学生进一步认识人与自然的密切关系;通过认识我国气候为农业生产提供的有利条件,增强学生热爱祖国的情感。

    教学重点

    1.我国气候的主要特征。

    2.我国气候为农业生产提供的有利条件。

    教学难点

    分析、归纳、概括我国气候的主要特征。

    教学媒体

    我国温度带和干湿区挂图或投影片,几个城市的气温曲线图、降水柱状图。

    教学过程

    【复习提问】前几节课我们学习了中国的气温和降水等知识,请同学们回忆两个问题:

    (1)我国冬季和夏季气温分布的有什么特点?

    (2)我国年降水量在地区分布和季节分配上有什么特点?

    学生回答。

    【导入新课】知道了我国气温和降水的一些待点,我国气候有什么特征呢?今天这节课,我们将运用所学的知识,分析、归纳出我国气候的主要特征,及我国气候对农业生产的影响。

    【板书】

    【读表提问】请同学们阅读课本第57页,“我国与世界纬度相近地区气温的比较”表,回答下列问题:

    (1)1月份,我国的齐齐哈尔、北京的平均气温,分别比法国的巴黎、美国的纽约低多少摄氏度?

    学生回答:分别低22.7℃和3.7℃。

    (2)7月份,齐齐哈尔、北京的气温分别比巴黎、纽约高多少摄氏度?

    学生回答:分别高26.3℃和7.3℃。

    (3)齐齐哈尔、北京的气温年较差,分别比巴黎、纽约大多少摄氏度?

    学生回答:齐齐哈尔比巴黎大26.3℃,北京比纽约大7.3℃。

    【提问】对上述问题,你能得出什么结论?(学生讨论回答。)

    【分析、归纳】冬季,我国比同纬度地区冷;夏季,我国大部分地区又比同纬度除沙漠地区以外暖热。因此,我国大部分地区的气温年较差比同纬度地区的气温年较差偏大。由此得出气温冬冷夏热的特点。大陆性气候显著。

    【展示】北京、齐齐哈尔、巴黎、纽约降水量柱状图。使同学们阅读柱状图,比较四个城市降水的季节分配有什么共同的特点。

    学生讨论、回答。

    【归纳总结】我国大部分地区降水的季节分配很不均匀,主要集中在7~8月份,降水的季节变化大;再加上降水的年际变化也较大,由此得出我国冬季干燥,夏季多雨,大陆性强的气候特点。归纳起来,一是说明我国季风气候显著,二是具有大陆性的特点。

    【板书】一、大陆性季风气候显著

    【读图提问】展示北京、武汉、哈尔滨等城市气温曲线降水量柱状图。请同学们读图。思考我国夏季气温、降水的共同特点什么?

    学生回答:我国夏季普遍高温,降水集中。

    【总结】这就是我国气候的第二个特证:雨热同期。

    【板书】二、雨热同期

    【启发提问】雨热同期。夏季,我国除了青藏高原,天山等少数高原,高山外,南北普遍高温,而且是世界同纬度上除沙漠以外最暖热的地区。因此,我国热量条件优越。这种优越的热量条件对农业生产有没有好处?有什么好处?请同学思考回答。

    学生讨论、回答。

    【概括总结】正如同学们所说,我国优越的热量条件,对农业生产很有利,可以使一些喜温的高产作物如水稻、玉米、棉花等。在我国广大的北方地区也有大面积种植;使得水稻、棉花的种植界线的纬度之高,在世界上也是数一数二的。由此可见,夏热是我国气候资源的一大优势。

    【板书】1.夏热是我国气候资源的一大优势。

    【启发提问】在高温的夏季,也是我国降水集中的季节,雨热同季对农作物生长有什么影响?

    同学讨论、回答。

    【归纳总结】农作物在高温的季节生长旺盛,需要大量水分,而我国高温多雨的夏季,正适合农作物、森林和牧草的生长。因此,高温期多雨期与农作物的生长期一致,是我国气候资源的又一大优势。

    【板书】2.高温期与多雨期一致,对农作物、森林、牧草的生长十分有利。

    【启发提问】请同学们回忆一下:(1)西亚、北非在北纬15°~30°的地区,气候景观有什么特点?

    (2)为什么我国处于同一纬度地带的长江以南地区,却成为降水丰沛的“鱼米之乡”?

    学生讨论、回答。

    【概括总结】在世界上北纬15°~30°的纬度带内,由于受副热带高气压带的影响,气候炎热干燥,大多呈现沙漠和荒漠景观。我国处于同一纬度地区的长江以南地区,由于受到东南季风和西南季风的影响,降水丰沛,年降水量在800毫米以上。并且雨热同季,利于水稻的生长,是我国重要的稻米产区,河湖众多,淡水鱼产量很大,从而成为我国著名的“鱼米之乡”。

    【展示挂图或投影片】展示我国温度带和干湿地区划分图。

    【复习提问】请同学们读我国温度带划分图和我国干湿地区划分图,说说我国可划分为哪几个温度带和干湿区?

    学生指图回答。

    【讲述】我国既有五个温度带和一个高原气候区,又有四个干湿地区,(投影片迭加演示)多种多样的温度带迭加在多种多样的干湿区上,这说明我国的气候复杂多样。气候的复杂多样是我国气候的又一显著特征。

    【板书】三、气候复杂多样

    1.多种多样的温度带和干湿区是我国气候复杂多样的一个重要标志。

    【读图思考】请同学们读课本第38页4.23图,“横断山区气候和植被的垂直变化”,和第59页4.24图,“秦岭南北”,思考说明地形对气候和植被有什么影响?

    【学生在教师的启发下回答问题】横断山区海拔很高,达数千米,随着山势的增高,气温降低,植被随之发生变比,从山下的常绿阔叶林依次过渡到针阔混交林—针叶林—高山草甸一雪线以上。说明地势的高低对气候影响很大,进而影响植被种类的生长分布。

    秦岭南北一图,表示了山南、山北在植物和景观上的差异。山南生长的是亚热带植物—柑橘树,山北生长的是温带植物——苹果树。这是因为秦岭在气候上起着屏障作用,可阻挡北部冬季风的南下。所以秦岭南坡气温高,为亚热带景观;北坡气温低,为暖温带景观。

    【讲述】由以上分析得出:地形是影响气候的重要因素之一。我国地形复杂多样,地势高低悬殊,使得我国的气候更加复杂多样。

    【板书】2.地势高低悬殊,地形多样,使我国气候更加复杂多样。

    【启发提问】我国气候的复杂多样,对农业生产有什么好处,多样的温度带和干湿区对各种植物和农作物品种的生长有什么影响?

    学生讨论、回答。

    【归纳总结】我国气候复杂多样。因此,世界上大多数农作物和动植物都能在我国找到适合生长的地区,使我国的农作物及各种动植物资源极其丰富。

    【板书】3.气候复杂多样,使得我国的农作物和动植物资源极其丰富。

    【复习巩固】选作复习题

    (4)我国气候有哪些主要特征?(3条)

    (2)我国气候对农业生产提供了哪些有利条件?

    板书设计

    一、大陆性季风气候显著

    二、雨热同期

    l.夏热是我国气候资源的一大优势。

    2.高温期与多雨期一致,对农作物、森林、牧草的生长十分有利。

    三、气候复杂多样

    1.多种多样的温度带和干湿区是我国气候复杂多样的一个重要标志。

    2.地势高低悬殊,地形多样,使我国气候更加复杂多样。

    3.气候复杂多样,使得我国的农作物和动植物资源极其丰富。

    【勾股定理相关教学方案】相关推荐
    动物在自然界中的作用初中教案精选

    一、教学目标1、能举例说明动物在维持生态平衡、促进生态系统的物质循环和帮助植物传粉、传播种子等方面的作用。2、认同动物是生物圈中重要成员的观点,培养学生爱护动物、保护动物的情感。3、学会用辩证的观点来...

    第 生物的进化教案

    第2节生物的进化一.教学目标:1.列举古生物学化石方面的证据说明生物是进化的;2.简述达尔文的自然选择学说的主要内容;3.形成生物进化的基本观点。二.教学重难点:4.生物化石的形成过程和化石记录的生物...