你的位置:
  • 范文大全
  • >教案
  • >导航
  • >[收藏]一次函数教案2500字
  • 一次函数教案

    发表时间:2023-03-19

    [收藏]一次函数教案2500字。

    只有给学生树立起好的榜样,才是一名合格的教师。教案也是老师在课堂上不可缺少的一样工具。教案可以让教学活动有条不紊的进行,教案包含哪几个层次呢?经过收集,我们为您献上一次函数教案,欢迎分享给你的朋友!

    一次函数教案【篇1】

    各位评委老师,你们好!

    我是来自密山市兴凯湖乡中学的一名数学教师,姓名姚宝昌。现任教数学学科。我今天参加说课大赛的题目是《一次函数图象的应用》。下面我说课开始,请各位评委对于不当之处给予批评指正。

    新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

    数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课的教学内容与学生的生活联系十分紧密,设计正是基于以上考虑而进行的。

    一、 教材分析:

    1、教材内容所处的地位及作用

    本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第六章第五节,课题为《一次函数图象的应用》。本节课为第一课时。其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。特别是在本节课中将要探索的“一次函数与一元一次方程的关系”,将为学生今后探索“一次函数与二元一次方程组的关系”以及“二次函数与一元二次方程的关系”起到重要的引领作用,这也将是本节课的一个难点问题。同时,本节课的重点就是要使学生体会数学知识与现实生活之间的密切联系,增强数学学习的应用意识。函数是描述客观世界变化规律的重要数学模型,在现实生活中有着广泛的应用,初中阶段,学生主要接触并学习三类函数,即一次函数、反比例函数和二次函数。最先学习的便是一次函数。在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。

    在《数学课程标准》中,对于本节内容提出了明确的要求,另外,一次函数图象的应用这一知识点在学生中考中有着重要的作用。在中考中,对于函数知识的考查,主要放在了一次函数上,分值在13分左右,在整个初中数学知识体系中,这一分值比例是很大的。而在一次函数中,又主要考查学生对于一次函数图象的分析、解读以及应用其解决问题。我省中考题中,多年来必有一道分值在8分左右的大题(25题)是在考查学生应用一次函数的图象解决问题的意识和能力。以上几个方面足可以证明一次函数图象的应用所处的重要地位和作用。

    2、教学目标:

    ⑴、知识与能力:

    ①、能通过函数图象获取信息,发展形象思维。

    ②、能利用函数图象解决简单的实际问题,发展学生的数学应用能力。

    ⑵、过程与方法:

    ①、在亲身的经历与实践探索过程中体会数学问题解决的办法。

    ②、初步体会方程与函数的关系,建立良好的知识联系。

    ⑶、情感态度与价值观:

    ①、进一步体会数学知识与现实生活的密切联系,丰富数学情感。

    ②、树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。

    3、教学重点、难点及其确立的依据:

    由于应用函数图象解决问题的关键是要很好地对给出的图象进行解读,将数学语言与生活语言进行互相转化,从图象中去获取信息,发现存在的已知条件进而去解决相应的数学问题。同时又考虑到一次函数图象的应用是学生在初中阶段所接触到的第一类函数图象的应用性问题,因此要求又不应过高,进而确立了本节课的重点;在难点问题的确立上,考虑到学生在学习中往往只注重当堂课的内容,而忽略知识之间的联系,特别是“数形结合”的学习意识还很淡薄,独立探索学习发现问题的能力还比较低,例如“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”学生就很难独立去发现,必须由教师进行引导发现,基于以上原因,进而确立了本节课的教学难点。具体为:

    1、教学重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。

    2、教学难点:体会函数与方程的关系,发展“数形结合”的思想。

    二、学情状况分析:

    1、学生现状:

    针对自己对学生在学习过程中的了解情况,特别是在第六章《一次函数》前四节课内容的学习情况,分析当前学生现状如下:

    ⑴、学生们整体性的学习目的较为明确,在学习上有强烈的求知欲望。

    ⑵、学生整体上知识功底较好,在数学问题的解决上已初步形成了一定的方法。

    ⑶、学生们具有探索精神和实践的意识,在学习活动中有主动质疑的意识,有批判意识。敢于表达自己的观点和想法。

    ⑷、善于在亲身的经历体验中去获取数学的新知识,但在数学说理和数学证明上尚不规范,欠缺相应的经验。

    2、知识情况:

    本节课的核心任务是组织学生通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。

    3、预期效果:

    学生在利用一次函数图象解决简单的问题上不会有太大的困难,因为在第五章《位置的确定》中有关平面直角坐标系及第六章前四节的学习中,学生在知识储备上已完全具备。而在相关经验上他们在七年级下学期第六章《变量之间的关系》一章中也早有所获得。但在“数形结合” 、“数形转化”以及用数学语言规范答题甚至包括探索一元一次方程与一次函数之间关系方面会有一些困难。

    另外,本节课的教学时间会十分紧张,自己在具体的课堂教学实践中将适时把握,恰当处理,以期达到最佳效果。

    一次函数教案【篇2】

    一、教材分析

    一教材的地位和作用

    今天我说课的内容是人教版八年级上册第十四章一次函数第一课时,本节内容四个课时完成。我设计的是第一课时的教学,主要内容是一次函数概念。学生已经学过了正比列函数之后来学习一次函数。一次函数既为前面学过的正比列函数知识得以概括和升华,也为后面学习函数知识打下了坚实的基础,因此,一次函数的学习起到了承上启下的作用。

    二、教学目标

    1.知识技能目标

    (1)掌握一次函数的概念和解析式的特点;

    (2)知道一次函数和正比列函数的关系;

    (3)会利用一次函数解决简单的数学问题。

    2.过程和方法

    (1)通过登山问题和正比例函数的概念引出一次函数的概念,培养学生的探究能力;

    (2)在教学过程中,让学生学会知识迁移、以及类比的思想。

    3.情感和态度

    (1)通过“登山问题”的研究,体会建立函数模型思想;

    (1)通过本节课的学习,向学生渗透数学和实践生活的紧密联系。

    三、教学重点

    1.一次函数的定义和解析式的特点;

    2.一次函数和正比列函数的关系;

    3.一次函数定义的应用以及解决相关的问题。

    四、教学难点

    一次函数和正比列函数的关系以及一次函数的应用。

    二、学情分析

    学生已经学过了正比列函数的相关知识,并结合实际的情境认识了正比例函数的意义、图像和性质以及一元一次方程等相关的知识。能利用正比列函数的思想解决简单的实际问题,为学生学习一次函数奠定了基础。

    三、学法分析

    用观察、思考、概括、总结、归纳、类比、联想是学法指导的重点

    四、教法分析

    采用“引导------发现式”的教学法

    五、教学过程

    一次函数教案【篇3】

    一、教材分析

    (一)教材的地位和作用

    函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美,学生在探索过程中体验到的数形结合以及数学建模思想,既是对前面所学知识的升华,同时也对今后学习高中的解析几何有着十分重要的意义。

    (二)教学目标

    新一轮的课程改革,旨在促进学生全面、持续、和谐的发展,我认为本节课的教学应达到以下目标:知识技能方面:理解一次函数与二元一次方程组的关系,会用图象法解二元一次方程组;

    数学思考方面:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去思考问题;

    解决问题方面:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题;

    情感态度方面:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信。

    (三)教学重、难点

    从以上目标可以看出,学生既要通过对一次函数与二元一次方程(组)关系的探究,习得知识、培养能力,又要用此关系解决相关实际问题,因此,本节课的教学重点应是一次函数与二元一次方程(组)关系的探索。考虑到八年级学生的数学应用意识不强,本节课的难点应是综合运用方程(组)、不等式和函数的知识解决相关实际问题。而关键则是通过问题情境的设计,激发学生的求知欲,引导学生探索、交流,引导学生发现、分析、解决问题。

    二、教法分析

    《数学课程标准》明确指出“数学教学是数学活动的教学”,“学生是数学学习的主人”。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生自由探索、合作交流与实践创新。对于认知主体来说,八年级学生乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生的主动发展,本节课我采用情境—探究式教学法,以“情境――问题――探究――交流――应用――反思――提高” 的模式展开,以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快学习。

    三、过程分析

    本着重实际、重探究、重过程、重交流的教学宗旨,我将本节课的教学设计成以下六个环节:情景导入——探究合作——解决问题——巩固提高——归纳小结——布置作业。

    这节课,我首先用贴近学生实际、学生感兴趣的问题——上网交费问题引导学生进入本节课的学习,充分调动学生的积极性。课件展示学生回答的用列方程组解答的过程,并提出问题:“同学们在解这个二元一次方程组时,基本上都是用的代入法或加减法,那么解二元一次方程组还有其它的方法吗?”学生讨论后可能会感到束手无策,感到原有的知识不够用了。一石激起千层浪,问题提出来后,如何解决呢?此时,作为教师,应把握好组织者、引导者和合作者的身份,不要急于发表自己的意见,而应启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的态势,从而唤起学生强烈的学习热情,使他们主动积极地投入到探索活动中来。另外,此问题的设置也为后面例题的讲解作好铺垫,有利于教学难点的突破。

    为使学生更好地掌握本节课的重点知识,我遵循从特殊到一般,再从一般到特殊的认知规律,设计了以下问题“你们能否将方程

    转化为一次函数的形式呢?”“如果能,你们能在平面直角坐标系中能画出它的图象吗?”在学生将方程转化为一次函数的形式并画出图象后,我引导学生观察直线上的几个点,发现它们的坐标都是方程

    的解,紧接着问“直线上任意一点的坐标一定是方程的解吗?”“是否任意的二元一次方程都可以转化为一次函数的形式呢?”“是否所有直线上任意一点的坐标都是它所对应的二元一次方程的解呢?”学生先独立思考,然后小组讨论,不难发现:每个二元一次方程都对应一个一次函数,于是也就对应一条直线。一连串的问题由浅入深,环环相扣,引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

    紧接着问学生:“你能用刚才的方法研究另一个方程2x—y=1吗?”学生在同一坐标系中画出一次函数y=2x—1的图象后,发现两条直线有一个交点,我又问“这个交点坐标与这两条直线所对应的方程的解有什么关系?与这两个方程组成的方程组的解又有什么关系?”此时,学生慢慢体会到:既然每个二元一次方程都对应一条直线,二元一次方程的每一个解又对应直线上的每一个点,那么两个二元一次方程的公共解就对应着两条直线的公共点,也就是说,二元一次方程组的解不就是对应着两条直线的交点吗?这个时期,教师应留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予及时帮助,师生共同归纳出:用画图象的方法可以解二元一次方程组,从而解决了本节课开头所提出的问题。然后共同归纳:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。这告诉我们,既可用画图象的方法可以解二元一次方程组,也可用解方程组的方法求两条直线交点的坐标。利用刚才已有的探究经验,学生很容易想到此问题的探究还可以从数的角度看,进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,这个函数值是何值。

    这样,学生经过自主探索、合作交流,从数和形两个角度认识了一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,并使学习过程成为一种再创造的过程。学生从一个个小问题的回答,到最后的归纳,充分享受学习、探究带来的快乐,此时教师应充分肯定学生的探究成果,及时对学生进行鼓励,关注学生的情感体验。

    为满足学生学以致用、争强好胜的心理需求,我特意设计了两个抢答题,既加强了对所学知识的消化理解,又调动了学生的积极性,更让他们在抢答中品味到了成功的快乐。趁着学生高涨的情绪,我迅速引入开头部分意犹未尽的上网收费问题,加以变式,再次激起学生强烈的求知欲望和主人翁的学习姿态。经过一番探索,学生可能想到:要选择合理的收费方式就需要对它们所收费用的大小进行比较,因此一定会有学生用过去的知识——方程或不等式解决问题,对于这部分学生的想法要给予充分的肯定表扬,然后继续提问“你能用今天所学的图象法来解决这个问题吗?”引导学生建立函数模型进行探索。

    学生在同一坐标系中分别画出两个一次函数的图象后,我引导学生观察图象的特征,学生讨论后发现当0 ≤ x 400时,红色点在蓝色点的下方,这样利用直线上点位置的高低直观地比较函数值的大小,从而找到答案。为避免图象法作图误差造成的不足,可引导学生通过代数计算求出交点坐标。为培养学生一题多解的能力,我启发学生用作差法,类似地用点位置的高低直观地找到y>0,y=0 及y

    为了巩固学生的学习成果,我把刚刚结束不久的铁山矿冶文化旅游节带进课堂,让学生欣赏一组美丽的黄石矿冶文化景点图片,在学生体验家乡美好的轻松愉快氛围中,我再一次出示了一个与之有关的旅游购票问题,并鼓励学生用不同的方法进行解答,进一步培养学生应用数学的意识,从而更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

    在课堂临近尾声时,引导学生对本节课所学进行小结,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。尝试开放式课堂教学,以真正体现学生的主体地位,使课堂活动民主化,多样化。

    本节课的作业由必做题和选做题组成,体现分层教学,让不同的学生在数学上得到不同的发展。

    四、设计说明

    这节课,我始终贯穿以学生为主体的原则,突出数形结合的思想,体现数学建模的价值,渗透应用数学的意识,关注学生个性的发展,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的学生在数学的各个不同方面上都得到不同的发展。

    一次函数教案【篇4】

    一,分析教材

    地位与重要性

    "一次函数的性质及其图象"是第十七章的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,可以让学生加深对一次函数概念的理解并学会通过函数的图象来求解一次函数,真正理会"数形结合"这一重要数学思想,并结合实际生活的例子,培养学生各种能力和发散性思维,为日后反比例函数,二次函数及其图象的教学做好准备,起到承上启下的重要作用。

    2,教学重难点

    重点是一次函数性质及其图象。一次函数性质及其图象的教学是初二的重要内容,这是建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。

    难点根据八年级学生重形象思维,弱抽象思维能力这一特点,我把一次函数性质及其图象的理解及应用作为本节课的难点

    设计意图:旨在明确教材的地位和作用,理解知识的内在联系才能创造性的使用教材。

    二,教学目标

    知识目标:理解一次函数的性质及其图象,学会性质判断函数值大小,及用数形结合的思想方法求函数值。

    能力目标:培养学生观察,分析的能力,数形结合的能力及与他人协作学习的能力,培养学生创造性思维和逻辑推理的能力,以及学数学用数学的能力。

    情感目标:体现了知识来源于实践,而运用于生活,同时渗透转化的思想,让学生体验客观事物是不断运动发展变化的,而事物之间又总是互相联系,互相制约的辨证唯物主义观点。

    设计意图:进行"多元"目标设计,重在贯彻新课标,体现学生发展的教育理念。

    三,陈述教学设想

    采用启发式和讨论式相结合等教学方法,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情。

    "授人以鱼,不如授人以渔",在教学过程中,还可以通过编故事,编题目,学生分组讨论等手段培养学生主动观察,主动思考,自我发现的学习能力,增强学生的综合素质,从而达到教学的终极目标。学生随时对所学知识产生有意注意,符合学生认知水平,培养了学习能力。

    设计意图:以建构主义理论为指导,要求学生学会知识,更要求学生会学知识。

    本节课还将采用多媒体课件教学,辅之与投影图片等

    设计意图:多媒体教学增强了教学的直观性,增加教学容量,提高教学效率。

    四,教学过程

    在本节复习课讲授及终结阶段的教学中,我力求发挥学生自我发现的能力,突出学生的教学主体地位,以启发,引导为教师的责任。

    话图象,思性质:理解并巩固一次函数性质及其图象;

    让学生板演画一次函数图象y=x—2;

    让学生说出一次函数的性质;

    同桌互提问题。

    设计意图:培养学生自己动手的能力。

    小试身手:发挥学生的主观能动性,使学生学会知识,而且会学知识;

    通过以上一次函数的图象,回答下列问题:

    根据前面所画图象中,x取何值时,y>0;

    y取何值时,x>0;

    当1让学生再画y=—x—2的图象,讨论k不变b变和b不变k变的情况,让同桌互相出题;设计意图:培养学生互相交流,互相协作的能力,加深对一次函数性质的理解。大显身手:利用一次函数的性质来解决一些实际问题。1,下图表示一辆汽车从出发到停止的行使过程中速度(v)随时间(t)变化的情况,下列判断错误的是()汽车从出发到停止,共行使了14分;汽车保持匀速行使了8分;出发后4分到12分之间,汽车处于停止状态;汽车从减速行使到停止用了2分。若把v改为s,你能叙述4—12小时的情况吗自己编一个故事,叙述这个图象所表达的意思,v(米/分)50041214t(分)2,图中表示骑自行车和摩托车者沿相同路线有甲地到乙地行使过程的函数图象,两地间的距离是80千米,请你根据图象回答解决下列问题。(请学生自己设计问题,告诉给其他组同学解决,进行比赛,适时对发言学生进行表扬,以资鼓励)y摩托车80自行车400348设计意图:让学生体会数学来源于实践又应用于实践,通过学生自己编故事,出题目等活动激发学生的学习积极性和主动性,调动学生的求知欲,让学生在愉悦,热烈的氛围中获取知识。五,小结提问:1,通过这一节课的学习,大家有那些体会和收获你能用所学的一次函数的性质来解决生活中的实际问题吗这节课我们学习了那些数学思想方法(课堂由学生自由发言,畅谈感受和体会,最后由教师归纳,总结)设计意图:让学生自己小结,活跃了课堂气氛,做到了全班参与,理清了知识又强化了重点,更培养了学生的能力。六,布置作业必做题p473,5,9选做题p4710设计意图:作业分层次布置,体现了因材施教原则,让不同的人在数学上有不同的发展。总之,在整个教学过程中,学生通过动手,动脑,动口等活动,主动探索,发现问题,互动合作,解决问题,归纳概括,形成能力。增强教学应用意识,协作学习意识,养成及时归纳总结的良好习惯,使学生的主体地位得以实现。又根据学生的基础不同,特安排必做题与选做题,更体现了应材施教这一举措,使全体学生都有所获。

    一次函数教案【篇5】

    一、分析教材与学生:

    这是华师大八年级数学(下)第17章第3节中的一堂课。本节课是在学生学习了平面直角坐标系、函数的图象,一次函数及其图象的基础上学习的,它既是对前面知识的延续,又是为后面学习反比例函数、二次函数的性质作铺垫,也是今后学习高中代数,解析几何及其它数学分支的重要基础。在教材中起着承上启下的作用。其中所渗透的“数形结合”,归纳等数学思想方法是对学生的数学有重要的作用。学生在理解图象的性质,以及运用数形结合的思想解决问题,感到困难。结合以上分析,确定本节课的重难点为:

    教学重点:结合图象,使学生进一步理解一次函数的图象

    和性质;

    教学难点:根据图象的性质来解决一些实际问题。

    教学关键:利用数形结合的思想,辅以电脑演示动画,变

    抽象为形象,注重知识的形成、发展过程,使学生在这些

    过程中展开思维,从而突出重点、突破难点。

    二、教学目标:

    ①知识目标:1、理解一次函数图象的性质,及学会性质判断函数值大小。

    2、学会待定系数法求一次函数解析式

    ②能力目标:培养学生观察、分析的能力,数形结合能力,

    化归能力,及与他人合作学习能力,培养学生创造性思维

    和逻辑推理的能力。

    ③情感目标:体现了知识来源于实践,而又运用于生活,

    同时渗透转化的思想,让学生体验客观事物是不断运动发

    展变化,而事物之间总是互相联系,互相制约的辩证唯物

    主义观点

    三、陈述教学设想:

    1、教法分析:本节课基本设计思路是着力于学生探索知识、体验知识发生、发展形成过程,通过创设探索学习情境,组识学生小组讨论、合作,让学生经历“尝试——猜想——验证”的过程中接受知识。获取知识。教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

    2、学法分析:通过让学生社会调查,收集有关资料等活动设计,引导学生观察、发现、转化,并在学生动手实践,自主探索,合作交流的基础,培养其互相协作能力,达到教法与学法的有机结合。以学生为主体,通过自主探索的方法,引导学生通过实践、思考、探索、交流获得知识,形成技能。培养学生动手,动口,动脑的能力。

    ①学会通过观察、比较、推理能概括一次函数的图象与性质。

    ②学会利用旧知转化成新知,解决新问题的能力。

    ③学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

    3、用及课程资源开发:本课将采用多媒体课件教学、辅之于投影图片等

    四、教学过程:

    (一)创设情景,引入课题:

    1、教师事先让学生利用课余时间到去了解联通公司手机使用收费情况,提出问题

    (1)联通的月租费是多少?

    (2)每分钟费用又是多少?

    在这基础上,让学生自己设计一个问题,然后能用函数关系来表示,从而引出诸如像y=30+0.3x等关系式组织学生讨论,生活中这样的函数关系式还能写出一些吗?

    2、教师让学生算一算,取10分、20分时所化费用并比较y1与y2的大小,我们可以从图象上又更直观地判断函数值的大小,从而引出课题:一次函数的性质(出示课题)

    (二)师生互动,探求新知

    (1)先让学生画出y=30+0.3x(x≥0)图象

    (2)让学生先独立思考,提出问题

    ①图象的位置从左到右是怎样变化的

    ②函数的值随着x又如何变化?在此基础上,组织四人小组讨论

    (3)交流阶段,每组派代表上台发表汇报本小组成员的探索与成果,同时回答其他小组同学的提问

    (4)教师又让学生自己画出y=—x+2,及y=—2x—1的图象,并再次组织讨论。

    最后,教师根据刚才学生讨论交流情况,用多媒体显示,学生得到的一次函数的性质

    ①K>0时,y随x的增大而增大,这时函数的图象从左到右上升

    ②K

    (5)这时教师又带领学生回到课一开始时提出的问题让学生学会从图象上观察,函数值的大小,从而培养数形结合能力,及应用能力,也能使所学知识得到及时巩固。

    (三)面授调节,练习反馈

    1、教师用多媒体显“做一做”然后组织学生独立完成

    2、巩固一次函数的性质,

    设计如下练习

    (1)y=(m-4)-2,当m取何值时,y随x的增大而增大

    (2)y=(m+0.5)xm2+1是一次函数,且y随x的增大而减小,求m值

    (3)图象上有两点(—1,a),(3,b)请比较a、b的大小

    (这题练习鼓励学生运用多种方法解决,然后让他们自己比较方法好坏)

    (4)设计一个实际应用题,让学生运用刚学的新知识尝试解决。

    (5)讲解课本例题,简要介绍待定系数法,及如何用“两点法”求一次函数解析式。

    3、同桌之间互相出题,再次巩固性质

    设计练习如下,已知一次函数图象如图如示,求一次函数解析式。

    (四)、梳理知识,系统归纳

    1、归纳总结:①哪些函数y随x的增大而增大?哪些函数y随x的增大而减小②与系数k、b的符号有何关系?③小结后填表

    图象的位置性质相同点

    2、提问:①通过这一节课学习,大家有哪些体会和收获?

    能说说吗?

    ②这节课你能用所学的一次函数的性质来解决生活中的实际问题吗?

    ③这节课我们学习了哪些数学思想方法?

    (同桌对讲、畅谈自己的感受和体会、学生发言,教师归纳、总结)

    (五)布置作业

    1、必做题见作业本(A)

    2、选做题:①A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城往C、D两地运费分别为20元/吨和25元/吨,从B城运往C、D两地运费分别为15元/吨和22元/吨,现已知C地需要220吨,D地需要280吨,如果某个体户承接这项运输业务,请你帮他算算,怎样调运花钱最少。

    3、写一篇有关“一次函数性质”的小论文。

    (六)、板书设计:

    一次函数的性质

    性质:

    小结:

    教师作图演示区

    表格:

    (七)说评价:

    学生学习数学的过程是一个基于学生经验的主动建构的过程。新课程理念下的教学过程是生生、师生交往,积极互动的过程。使学生通过互动得到其相应的发展是我们进行教学的根本宗旨,同时,学生之间互相合作,彼此获得双赢,我们所采取的一切方法都是为这个宗旨服务的,我们教师怎样才能在“动”的课堂时刻把握方向引领学生,到达发展学生的彼岸,是我们必须思考的问题。“关注学生的生活,认识经验”是新课标所提倡的,在本堂课设计中,我力图体现上述宗旨。

    (八)教学设计说明

    本节课的主要内容是规律原理的探索和技能的形成,因此本节课归为探究型教学目标类型。基于这一原则,我对本节课教学设计的指导思想如下:

    ⑴以实现教学目标为前提:强调学生双基的培养以及思想品德教育,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。

    ⑵以现代教育理论为依据:注重学生的心理活动过程、人类掌握知识和形成能力的发展过程,强调教学过程的有序性。

    ⑶以基本的教学原则作指导:充分发挥学生的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知。

    ⑷以先进的现代信息技术为手段:适当地辅以先进的电脑多媒体技术,演示运动变化规律、揭示事物本质特征;提供典型现象和过程,供学生作为分析、思考、探究、发现的对象,以帮助学生理解原理,并掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学媒体有机结合,以实现教学最优化。

    【[收藏]一次函数教案2500字】相关推荐
    五年级下学期班主任工作计划 优秀范文模板

    充分准备一份教案是一名优秀教师的职责所在,我们可以通过教案来进行更好的教学,每一位教师都要慎重考虑教案的设计,你是否在烦恼教案怎么写呢?可以看看本站收集的《五年级下学期班主任工作计划 优秀范文模板》,希望能够为您提供参考。五年级下学期班主任工作计划新的一学期又开始了,为了在新的学期里把工作做好,把我...

    2023春四年级班主任工作计划

    按照学校要求,教师都需要用到教案,教案在我们教师的教学中非常重要,做好教案对我们未来发展有着很重要的意义,如何才能写好教案呢?下面是小编特地为大家整理的“春四年级班主任工作计划”。20xx春四年级下学期班主任工作计划本学期我继续担任四年级的班主任,为了更好地开展工作,现拟订本学期班主任工作计划。一、...