你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >数学教案-平行线等分线定理相关教学方案
  • 数学教案-平行线等分线定理相关教学方案

    发表时间:2022-01-30

    【www.jk251.com - 平行线等分线段定理】

    按照惯例,初中教师必须撰写自己的教案,多写教案能够提升我们的策划能力,在教案中总结好经验与教训,我们才能逐步成熟起来。怎样写好自己的初中教案呢?为了帮助大家,下面是由小编为大家整理的数学教案-平行线等分线定理相关教学方案,仅供参考,欢迎大家阅读。

    教学建议

    1.平行线等分线段定理

    定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.

    注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.

    定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.

    2.平行线等分线段定理的推论

    推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

    推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

    记忆方法:“中点”+“平行”得“中点”.

    推论的用途:(1)平分已知线段;(2)证明线段的倍分.

    重难点分析

    本节的重点是平行线等分线段定理.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.

    本节的难点也是平行线等分线段定理.由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.

    教法建议

    平行线等分线段定理的引入

    生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:

    ①从生活实例引入,如刻度尺、作业本、栅栏、等等;

    ②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论.

    教学设计示例

    一、教学目标

    1.使学生掌握平行线等分线段定理及推论.

    2.能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力.

    3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.

    4.通过本节学习,体会图形语言和符号语言的和谐美

    二、教法设计

    学生观察发现、讨论研究,教师引导分析

    三、重点、难点

    1.教学重点:平行线等分线段定理

    2.教学难点:平行线等分线段定理

    四、课时安排

    l课时

    五、教具学具

    计算机、投影仪、胶片、常用画图工具

    六、师生互动活动设计

    教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

    七、教学步骤

    【复习提问】

    1.什么叫平行线?平行线有什么性质.

    2.什么叫平行四边形?平行四边形有什么性质?

    【引入新课】

    由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?

    (引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)

    平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.

    注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.

    下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).

    已知:如图,直线,.

    求证:.

    分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论.

    (引导学生找出另一种证法)

    分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.

    证明:过点作分别交、于点、,得和,如图.

    ∵,

    又∵,,

    为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).

    引导学生观察下图,在梯形中,,,则可得到,由此得出推论1.

    推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

    再引导学生观察下图,在中,,,则可得到,由此得出推论2.

    推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.

    注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.

    接下来讲如何利用平行线等分线段定理来任意等分一条线段.

    例已知:如图,线段.

    求作:线段的五等分点.

    作法:①作射线.

    ②在射线上以任意长顺次截取.

    ③连结.

    ④过点.、、分别作的平行线、、、,分别交于点、、、.

    、、、就是所求的五等分点.

    (说明略,由学生口述即可)

    【总结、扩展】

    小结:

    (l)平行线等分线段定理及推论.

    (2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.

    (3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.

    (4)应用定理任意等分一条线段.

    八、布置作业

    教材P188中A组2、9

    九、板书设计

    Jk251.com相关文章推荐

    经典初中教案平行线等分线定理


    教学建议

    1.

    定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.

    注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.

    定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.

    2.的推论

    推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

    推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

    记忆方法:“中点”+“平行”得“中点”.

    推论的用途:(1)平分已知线段;(2)证明线段的倍分.

    重难点分析

    本节的重点是.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.

    本节的难点也是.由于学生初次接触到,在认识和理解上有一定的难度,在加上的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.

    教法建议

    的引入

    生活中有许多的例子,并不陌生,的引入可从下面几个角度考虑:

    ①从生活实例引入,如刻度尺、作业本、栅栏、等等;

    ②可用问题式引入,开始时设计一系列与概念相关的问题由学生进行思考、研究,然后给出和推论.

    教学设计示例

    一、教学目标

    1.使学生掌握及推论.

    2.能够利用任意等分一条已知线段,进一步培养学生的作图能力.

    3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.

    4.通过本节学习,体会图形语言和符号语言的和谐美

    二、教法设计

    学生观察发现、讨论研究,教师引导分析

    三、重点、难点

    1.教学重点:

    2.教学难点:

    四、课时安排

    l课时

    五、教具学具

    计算机、投影仪、胶片、常用画图工具

    六、师生互动活动设计

    教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

    七、教学步骤

    【复习提问】

    1.什么叫平行线?平行线有什么性质.

    2.什么叫平行四边形?平行四边形有什么性质?

    【引入新课】

    由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?

    (引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到)

    :如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.

    注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.

    下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).

    已知:如图,直线,.

    求证:.

    分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论.

    (引导学生找出另一种证法)

    分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.

    证明:过点作分别交、于点、,得和,如图.

    ∵,

    又∵,,

    为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).

    引导学生观察下图,在梯形中,,,则可得到,由此得出推论1.

    推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

    再引导学生观察下图,在中,,,则可得到,由此得出推论2.

    推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.

    注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.

    接下来讲如何利用来任意等分一条线段.

    例已知:如图,线段.

    求作:线段的五等分点.

    作法:①作射线.

    ②在射线上以任意长顺次截取.

    ③连结.

    ④过点.、、分别作的平行线、、、,分别交于点、、、.

    、、、就是所求的五等分点.

    (说明略,由学生口述即可)

    【总结、扩展】

    小结:

    (l)及推论.

    (2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.

    (3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.

    (4)应用定理任意等分一条线段.

    八、布置作业

    教材P188中A组2、9

    九、板书设计

    十、随堂练习

    教材P182中1、2

    平行线分线成比例定理


    (第二课时)

    一、教学目标

    1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.

    2.使学生掌握三角形一边平行线的判定定理.

    3.已知线的成已知比的作图问题.

    4.通过应用,培养识图能力和推理论证能力.

    5.通过定理的教学,进一步培养学生类比的数学思想.

    二、教学设计

    观察、猜想、归纳、讲解

    三、重点、难点

    l.教学重点:是平行线分线段成比例定理和推论及其应用.

    2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、常用画图工具.

    六、教学步骤

    【复习提问】

    叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).

    【讲解新课】

    在黑板上画出图,观察其特点:与的交点A在直线上,根据平行线分线段成比例定理有:……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:

    平行于的边BC的直线DE截AB、AC,所得对应线段成比例.

    在黑板上画出左图,观察其特点:与的交点A在直线上,同样可得出:(六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:

    平行于的边BC的直线DE截边BA、CA的延长线,所以对应线段成比例.

    综上所述,可以得到:

    推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.

    如图,(六个比例式).

    此推论是判定三角形相似的基础.

    注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,如果已知,DE是截线,这个推论包含了下图的各种情况.

    这个推论不包含下图的情况.

    后者,教学中如学生不提起,可不必向学生交待.(考虑改用投影仪或小黑板)

    例3已知:如图,,求:AE.

    教材上采用了先求CE再求AE的方法,建议在列比例式时,把CE写成比例第一项,即:.

    让学生思考,是否可直接未出AE(找学生板演).

    【小结】

    1.知道推论的探索方法.

    2.重点是推论的正确运用

    七、布置作业

    (1)教材P215中2.

    (2)选作教材P222中B组1.

    八、板书设计

    【数学教案-平行线等分线定理相关教学方案】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...