你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >数学教案-二次根式的化简教案模板
  • 数学教案-二次根式的化简教案模板

    发表时间:2022-01-29

    【www.jk251.com - 二次根式教案】

    当我们提起初中教学,你印象最深刻的一定是教案吧。教案在我们的教学生活当中十分常见,一份优质的教学方案往往来自教师长时间的经验累积,那么如何写一份初中教案?希望《数学教案-二次根式的化简教案模板》能够为您提供帮助。

    一、教学目标

    1.掌握二次根式的性质

    2.能够利用二次根式的性质化简二次根式

    3.通过本节的学习渗透分类讨论的数学思想和方法

    二、教学设计

    对比、归纳、总结

    三、重点和难点

    1.重点:理解并掌握二次根式的性质

    2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、多媒体

    六、师生互动活动设计

    复习对比,归纳整理,应用提高,以学生活动为主

    七、教学步骤

    (一)教学过程

    【复习引入】

    1.求值、、、…

    求值、、、…

    结论:当时,;

    当时,.

    2.求值、…

    结论:当时,式子有意义,,对于,不能为负数.

    3.求值、…

    结论:当时,.

    问:若根号内这个式子中的底数,根式还有意义吗?其值等于什么?

    例如,,其中-2与2互为相反数;,其中-3与3互为相反数;,其中与互为相反数.

    【讲解新课】

    提出问题:等于什么?引导学生讨论、猜测、联想,得到结论:

    教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若时,能否等于,以增强学生的辨别能力,加强学生对公式的理解和记忆.

    例1化简:

    (1);(2).

    解:(略).

    注:可看作,把先写为;

    可看作,把先写为.

    例2化简:.

    分析:底数是非负数还是负数将直接影响结果,这时要注意条件,由条件,可得.

    ∴.

    解:(略).

    例3化简下列各式:

    (1)();(2)();

    (3)();(4)().

    解:(1)∵

    ∴.

    (2)∵

    ∴,即.

    (3)∵

    ∴,即.

    (4)∵,

    ∵,即.

    ∴.

    注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.

    在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.

    (二)随堂练习

    1.求值:

    (1);(2);(3)();

    (4);(5).

    解:(1).

    (2).

    (3).

    (4).

    (5).

    注:,学生易与相混淆.

    2.化简:

    (1);(2);(3);

    (4)();(5)().

    解:(1).

    (2).

    (3).

    (4).

    (5).

    (三)总结、扩展

    对公式,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.

    (四)布置作业

    教材P213中1(2)、(3);2(1)、(2).

    (五)板书设计

    标题

    1.复习题4.练习题

    2.公式

    3.例题

    jK251.com其他人还在看

    二次根式的化简


    (第1课时)

    一、教学目标

    1.掌握二次根式的性质

    2.能够利用二次根式的性质化简二次根式

    3.通过本节的学习渗透分类讨论的数学思想和方法

    二、教学设计

    对比、归纳、总结

    三、重点和难点

    1.重点:理解并掌握二次根式的性质

    2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、多媒体

    六、师生互动活动设计

    复习对比,归纳整理,应用提高,以学生活动为主

    七、教学步骤

    (一)教学过程

    【复习引入】

    1.求值、、、…

    求值、、、…

    结论:当时,;

    当时,.

    2.求值、…

    结论:当时,式子有意义,,对于,不能为负数.

    3.求值、…

    结论:当时,.

    问:若根号内这个式子中的底数,根式还有意义吗?其值等于什么?

    例如,,其中-2与2互为相反数;,其中-3与3互为相反数;,其中与互为相反数.

    【讲解新课】

    提出问题:等于什么?引导学生讨论、猜测、联想,得到结论:

    教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若时,能否等于,以增强学生的辨别能力,加强学生对公式的理解和记忆.

    例1化简:

    (1);(2).

    解:(略).

    注:可看作,把先写为;

    可看作,把先写为.

    例2化简:.

    分析:底数是非负数还是负数将直接影响结果,这时要注意条件,由条件,可得.

    ∴.

    解:(略).

    例3化简下列各式:

    (1)();(2)();

    (3)();(4)().

    解:(1)∵

    ∴.

    (2)∵

    ∴,即.

    (3)∵

    ∴,即.

    (4)∵,

    ∵,即.

    ∴.

    注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.

    在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.

    (二)随堂练习

    1.求值:

    (1);(2);(3)();

    (4);(5).

    解:(1).

    (2).

    (3).

    (4).

    (5).

    注:,学生易与相混淆.

    2.化简:

    (1);(2);(3);

    (4)();(5)().

    解:(1).

    (2).

    (3).

    (4).

    (5).

    (三)总结、扩展

    对公式,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.

    (四)布置作业

    教材P213中1(2)、(3);2(1)、(2).

    (五)板书设计

    标题

    1.复习题4.练习题

    2.公式

    3.例题

    数学教案-二次根式


    一、教学目标

    1.了解二次根式的意义;

    2.掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

    3.掌握二次根式的性质和,并能灵活应用;

    4.通过二次根式的计算培养学生的逻辑思维能力;

    5.通过二次根式性质和的介绍渗透对称性、规律性的数学美.

    二、教学重点和难点

    重点:(1)二次根的意义;(2)二次根式中字母的取值范围.

    难点:确定二次根式中字母的取值范围.

    三、教学方法

    启发式、讲练结合.

    四、教学过程

    (一)复习提问

    1.什么叫平方根、算术平方根?

    2.说出下列各式的意义,并计算:

    ,,,,,,,

    通过练习使学生进一步理解平方根、算术平方根的概念.

    观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,

    ,,,表示的是算术平方根.

    (二)引入新课

    我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:

    新课:二次根式

    定义:式子叫做二次根式.

    对于请同学们讨论论应注意的问题,引导学生总结:

    (1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

    若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

    (2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

    根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

    例1当a为实数时,下列各式中哪些是二次根式?

    分析:,,,、、、四个是二次根式.因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是二次根式.

    例2x是怎样的实数时,式子在实数范围有意义?

    解:略.

    说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.

    例3当字母取何值时,下列各式为二次根式:

    (1)(2)(3)(4)

    分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.

    解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式.

    (2)-3x≥0,x≤0,即x≤0时,是二次根式.

    (3),且x≠0,∴x>0,当x>0时,是二次根式.

    (4),即,故x-2≥0且x-2≠0,∴x>2.当x>2时,是二次根式.

    例4下列各式是二次根式,求式子中的字母所满足的条件:

    (1);(2);(3);(4)

    分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

    解:(1)由2a+3≥0,得.

    (2)由,得3a-1>0,解得.

    (3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是二次根式.所以所求字母x的取值范围是全体实数.

    (4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

    (三)小结(引导学生做出本节课学习内容小结)

    1.式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.

    2.式子中,被开方数(式)必须大于等于零.

    (四)练习和作业

    练习:

    1.判断下列各式是否是二次根式

    分析:(2)中,,是二次根式;(5)是二次根式.因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.

    2.a是怎样的实数时,下列各式在实数范围内有意义?

    五、作业

    教材p.172习题11.1;a组1;b组1.

    六、板书设计

    经典初中教案二次根式的化简


    教学建议

    知识结构

    .

    重难点分析

    本节的重点是的化简.本章自始至终围绕着与计算进行,而的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

    本节的难点是正确理解与应用公式

    .

    这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

    教法建议

    1.性质的引入方法很多,以下2种比较常用:

    (1)设计问题引导启发:由设计的问题

    1)、、各等于什么?

    2)、、各等于什么?

    启发、引导学生猜想出

    (2)从算术平方根的意义引入.

    2.性质的巩固有两个方面需要注意:

    (1)注意与性质进行对比,可出几道类型不同的题进行比较;

    (2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.

    (第1课时)

    一、教学目标

    1.掌握二次根式的性质

    2.能够利用二次根式的性质化简二次根式

    3.通过本节的学习渗透分类讨论的数学思想和方法

    二、教学设计

    对比、归纳、总结

    三、重点和难点

    1.重点:理解并掌握二次根式的性质

    2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、多媒体

    六、师生互动活动设计

    复习对比,归纳整理,应用提高,以学生活动为主

    七、教学过程

    一、导入新课

    我们知道,式子()表示非负数的算术平方根.

    问:式子的意义是什么?被开方数中的表示的是什么数?

    答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.

    二、新课

    计算下列各题,并回答以下问题:

    (1);(2);(3);

    (4);(5);(6)

    (7);(8)

    1.各小题中被开方数的幂的底数都是什么数?

    2.各小题的结果和相应的被开方数的幂的底数有什么关系?

    3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.

    答:

    (1);(2);(3);

    (4);(5);(6)

    (7);(8).

    1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.

    2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.

    3.用字母表示(1),(2),(3),(8)各题中被开方数的幂的底数,有

    (),

    用字母表示(4),(5),(6),(7)各题中被开方数的幂的底数,有

    ().

    一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.

    问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)

    答:

    请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?

    答:

    填空:

    1.当_________时,;

    2.当时,,当时,;

    3.若,则________;

    4.当时,.

    答:

    1.当时,;

    2.当时,,

    当时,;

    3.若,则;

    4.当时,.

    例1化简().

    分析:可以利用积的算术平方根的性质及二次根式的性质化简.

    解,因为,所以,所以

    指出:在化简和运算过程中,把先写成,再根据已知条件中的取值范围,确定其结果.

    例2化简().

    分析:根据二次根式的性质,当时,.

    解.

    例3化简:(1)();(2)().

    分析:根据二次根式的性质,当时,.

    解(1).

    (2).

    注意:(1)题中的被开方数,因为,所以.

    (2)题中的被开方数,因为,所以.

    这里的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.

    例4化简.

    分析:根据二次根式的性质,有

    所以要比较与3及1与的大小以确定及的符号,然后再进行化简.

    解因为,,所以

    ,.

    所以

    三、课堂练习

    1.求下列各式的值:

    (1);(2).

    2.化简:

    (1);(2);

    (3)();(4)().

    3.化简:

    (1);(2);

    (3);(4);

    (5);(6)().

    答案:

    1.(1)0.1;(2).

    2.(1);(2);(3);(4).

    3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.

    四、小结

    1.二次根式的意义是,所以,因此,其中可以取任意实数.

    2.化简形如的二次根式,首先可把写成的形式,再根据已知条件中字母的取值范围,确定其结果.

    3.在化简中,注意运用题设中的隐含条件,如二次根式有意义的条件是被开方,这是隐含条件.

    五、作业

    1.化简:

    (1);(2);

    (3)();(4)();

    (5);(6)(,);

    (7)().

    2.化简:

    (1);

    (2)();

    (3)(,).

    答案:

    1.(1)-30;(2);(3);

    (4);(5);(6);(7).

    2.(1)2;(2)0;(3).

    【数学教案-二次根式的化简教案模板】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...