【www.jk251.com - 三角形相似的判定】
按照学校要求,初中老师都需要用到教案,教案可以围绕我们学校的各方面来写,可以通过编写教案认识自己教学的优点和不足。好的初中教案都有哪些内容?这篇《经典初中教案数学教案-三角形相似的判定》应该可以帮助到您。
教学建议
知识结构
重点、难点分析
相似三角形的判定及应用是本节的重点也是难点.
它是本章的主要内容之一,是在学完相似三角形的基础上,进一步研究相似三角形的本质,以完成对相似三角形的定义、判定全面研究.相似三角形的判定还是研究相似三角形性质的基础,是今后研究圆中线段关系的工具.
它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.
释疑解难
(1)全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的3个定理和判定两个三角形相似的3个定理之间有内在的联系,不同之处仅在于前者是后者相似比为1的情况.
(2)相似三角形的判定定理的选择:①已知有一角相等时,可选择判定定理1与判定定理2;②已知有二边对应成比例时,可选择判定定理2与判定定理3;③判定直角三角形相似时,首先看是否可以用判定直角三角形的方法来判定,如果不能,再考虑用判定一般三角形相似的方法来判定.
(3)相似三角形的判定定理的作用:①可以用来判定两个三角形相似;②间接证明角相等、线段域比例;③间接地为计算线段的长度及角的大小创造条件.
(4)三角形相似的基本图形:①平行型:如图1,“A”型即公共角对的边平行,“×”型即对顶角对的边平行,都可推出两个三角形相似;②相交线型:如图2,公共角对的边不平行,即相交或延长线相交或对顶角所对边延长相交.图中几种情况只要配上一对角相等,或夹公共角(或对顶角)的两边成比例,就可以判定两个三角形相似。
(第1课时)
一、教学目标
1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.
2.继续渗透和培养学生对类比数学思想的认识和理解.
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.
4.通过学习,了解由特殊到一般的唯物辩证法的观点.
二、教学设计
类比学习,探讨发现
三、重点及难点
1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.
2.教学难点:是了解判定定理1的证题方法与思路.
四、课时安排
1课时
五、教具学具准备
多媒体、常用画图工具、
六、教学步骤
[复习提问]
1.什么叫相似三角形?什么叫相似比?
2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.
[讲解新课]
我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有
三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们
来研究能不能用较少的几个条件就能判定三角形相似呢?
上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.
我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形
全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:
问:判定两个三角形全等的方法有哪几种?
答:SAS、ASA(AAS)、SSS、HL.
问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?
答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.
问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?
答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.
(2)用类比方法找出的新命题一定要加以证明.
如图5-53,在△ABC和△中,,.
问:△ABC和△是否相似?
分析:可采用问答式以启发学生了解证明方法.
问:我们现在已经学习了哪几个判定三角形相似的方法?
答:①三角形的定义,②上一节学习的预备定理.
问:根据本命题条件,探讨时应采用哪种方法?为什么?
答:预备定理,因为用定义条件明显不够.
问:采用预备定理,必须构造出怎样的图形?
答:或.
问:应如何添加辅助线,才能构造出上一问的图形?
此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.
(1)在△ABC边AB(或延长线)上,截取,过D作DE∥BC交AC于E.
“作相似.证全等”.
(2)在△ABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE=,连结DE,“作全等,证相似”.
(教师向学生解释清楚“或延长线”的情况)
虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.
判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
简单说成:两角对应相等,两三角形相似.
,,
∽.
例1已知和中,,,.
求证:∽.
此例题是判定定理的直拉应用,应使学生熟练掌握.
例2直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.
已知:如图5-54,在中,CD是斜边上的高.
求证:∽∽.
该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.
即∽△∽△.
[小结]
1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.
2.判定定理1的应用以及记住例2的结论并会应用.
七、布置作业
教材P238中A组3、4.
八、板书设计
Jk251.coM编辑推荐
三角形相似的判定
(第3课时)
一、教学目标
1.使学生了解直角三角形相似定理的证明方法并会应用.
2.继续渗透和培养学生对类比数学思想的认识和理解.
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.
4.通过学习,了解由特殊到一般的唯物辩证法的观点.
二、教学设计
类比学习,探讨发现
三、重点及难点
1.教学重点:是直角三角形相似定理的应用.
2.教学难点:是了解直角三角形相似判定定理的证题方法与思路.
四、课时安排
3课时
五、教具学具准备
多媒体、常用画图工具、
六、教学步骤
[复习提问]
1.我们学习了几种判定三角形相似的方法?(5种)
2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写).
其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)
3.什么是“勾股定理”?什么是比例的合比性质?
【讲解新课】
类比判定直角三角形全等的“HL”方法,让学生试推出:
直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
已知:如图,在∽中,
求证:∽
建议让学生自己写出“已知、求征”.
这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到.应让学生对此有所了解.
定理证明过程中的“都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题.
例4已知:如图,,,,当BD与、之间满足怎样的关系时∽.
解(略)
教师在讲解例题时,应指出要使∽.应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边.
还可提问:(1)当BD与、满足怎样的关系时∽?(答案:)
(2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)
(答案:或两种情况)
探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式.”
这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度.
[小结]
1.直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用.
2.让学生了解了用代数法证几何命题的思想方法.
3.关于探索性题目的处理.
七、布置作业
教材P239中A组9、教材P240中B组3.
八、板书设计
数学教案-三角形相似的判定教案模板
(第2课时)
一、教学目标
1.使学生了解判定定理2、3的证明方法并会应用.
2.继续渗透和培养学生对类比数学思想的认识和理解.
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.
4.通过学习,了解由特殊到一般的唯物辩证法的观点.
二、教学设计
类比学习,探讨发现
三、重点及难点
1.教学重点:是判定定理2、3的应用.
2.教学难点:是了解判定定理2的证题方法与思路.
四、课时安排
1课时
五、教具学具准备
多媒体、常用画图工具、
六、教学步骤
[复习提问]
1.我们已经学习了几种判定三角形相似的方法?
2.叙述判定定理1,定理1的证题思路是什么?(①作相似,证全等,②作全等,证相似).
[讲解新课]
类比三角形全等判定的“SAS”让学生得出:
判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
简单说成:两边对应成比例且夹角相等,两三角形相似.
已知:如图,在和中,
且.
求证:∽
建议“已知、求证”要学生自己写出.
另外,依照判定定理1的两个证明思路,让学生自己说出辅助线的作法.
下面判定定理3的引出与证明同判定定理2,这里从略.
在讲解判定定理3的过程中,再一次强调使用比例证明线段相等的方法,以便使学生能够熟练掌握它.
例3依据下列各组条件,判定与是不是相似,并证明为什么:
(1),,
(2),,
解:让学生试着写出解题过程
这种类型的题具有两层意思:一是对正确的题目加以证明;二是对不正确的题目要说出理由或举反例,但后者对于初二学生来说比较困难.为降低难度,这里的题目全是正确的,只要求学生能用学过的知识给出证明就可以了,不必研究如何判定两个三角形不相似.
[小结]
1.让学生了解判定定理2、3的证明思路与方法.
2.会利用两个判定定理判定两个三角形是否相似.
七、布置作业
教材P238中A组5、P241中B组1.
八、板书设计
数学教案-三角形相似的判定初中教案精选
(第3课时)
一、教学目标
1.使学生了解直角三角形相似定理的证明方法并会应用.
2.继续渗透和培养学生对类比数学思想的认识和理解.
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.
4.通过学习,了解由特殊到一般的唯物辩证法的观点.
二、教学设计
类比学习,探讨发现
三、重点及难点
1.教学重点:是直角三角形相似定理的应用.
2.教学难点:是了解直角三角形相似判定定理的证题方法与思路.
四、课时安排
3课时
五、教具学具准备
多媒体、常用画图工具、
六、教学步骤
[复习提问]
1.我们学习了几种判定三角形相似的方法?(5种)
2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写).
其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)
3.什么是“勾股定理”?什么是比例的合比性质?
【讲解新课】
类比判定直角三角形全等的“HL”方法,让学生试推出:
直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
已知:如图,在∽中,
求证:∽
建议让学生自己写出“已知、求征”.
这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到.应让学生对此有所了解.
定理证明过程中的“都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题.
例4已知:如图,,,,当BD与、之间满足怎样的关系时∽.
解(略)
教师在讲解例题时,应指出要使∽.应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边.
还可提问:(1)当BD与、满足怎样的关系时∽?(答案:)
(2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)
(答案:或两种情况)
探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式.”
这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度.
[小结]
1.直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用.
2.让学生了解了用代数法证几何命题的思想方法.
3.关于探索性题目的处理.
七、布置作业
教材P239中A组9、教材P240中B组3.
八、板书设计
三角形相似的判定初中教案精选
(第3课时)
一、教学目标
1.使学生了解直角三角形相似定理的证明方法并会应用.
2.继续渗透和培养学生对类比数学思想的认识和理解.
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.
4.通过学习,了解由特殊到一般的唯物辩证法的观点.
二、教学设计
类比学习,探讨发现
三、重点及难点
1.教学重点:是直角三角形相似定理的应用.
2.教学难点:是了解直角三角形相似判定定理的证题方法与思路.
四、课时安排
3课时
五、教具学具准备
多媒体、常用画图工具、
六、教学步骤
[复习提问]
1.我们学习了几种判定三角形相似的方法?(5种)
2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写).
其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)
3.什么是“勾股定理”?什么是比例的合比性质?
【讲解新课】
类比判定直角三角形全等的“HL”方法,让学生试推出:
直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
已知:如图,在∽中,
求证:∽
建议让学生自己写出“已知、求征”.
这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到.应让学生对此有所了解.
定理证明过程中的“都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题.
例4已知:如图,,,,当BD与、之间满足怎样的关系时∽.
解(略)
教师在讲解例题时,应指出要使∽.应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边.
还可提问:(1)当BD与、满足怎样的关系时∽?(答案:)
(2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)
(答案:或两种情况)
探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式.”
这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度.
[小结]
1.直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用.
2.让学生了解了用代数法证几何命题的思想方法.
3.关于探索性题目的处理.
七、布置作业
教材P239中A组9、教材P240中B组3.
八、板书设计
三角形相似的判定的教学方案
教学建议
知识结构
重点、难点分析
相似三角形的判定及应用是本节的重点也是难点.
它是本章的主要内容之一,是在学完相似三角形的基础上,进一步研究相似三角形的本质,以完成对相似三角形的定义、判定全面研究.相似三角形的判定还是研究相似三角形性质的基础,是今后研究圆中线段关系的工具.
它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.
释疑解难
(1)全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的3个定理和判定两个三角形相似的3个定理之间有内在的联系,不同之处仅在于前者是后者相似比为1的情况.
(2)相似三角形的判定定理的选择:①已知有一角相等时,可选择判定定理1与判定定理2;②已知有二边对应成比例时,可选择判定定理2与判定定理3;③判定直角三角形相似时,首先看是否可以用判定直角三角形的方法来判定,如果不能,再考虑用判定一般三角形相似的方法来判定.
(3)相似三角形的判定定理的作用:①可以用来判定两个三角形相似;②间接证明角相等、线段域比例;③间接地为计算线段的长度及角的大小创造条件.
(4)三角形相似的基本图形:①平行型:如图1,“A”型即公共角对的边平行,“×”型即对顶角对的边平行,都可推出两个三角形相似;②相交线型:如图2,公共角对的边不平行,即相交或延长线相交或对顶角所对边延长相交.图中几种情况只要配上一对角相等,或夹公共角(或对顶角)的两边成比例,就可以判定两个三角形相似。
(第1课时)
一、教学目标
1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.
2.继续渗透和培养学生对类比数学思想的认识和理解.
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.
4.通过学习,了解由特殊到一般的唯物辩证法的观点.
二、教学设计
类比学习,探讨发现
三、重点及难点
1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.
2.教学难点:是了解判定定理1的证题方法与思路.
四、课时安排
1课时
五、教具学具准备
多媒体、常用画图工具、
六、教学步骤
[复习提问]
1.什么叫相似三角形?什么叫相似比?
2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.
[讲解新课]
我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有
三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们
来研究能不能用较少的几个条件就能判定三角形相似呢?
上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种方法.
我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形
全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:
问:判定两个三角形全等的方法有哪几种?
答:SAS、ASA(AAS)、SSS、HL.
问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到中应如何说?
答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.
问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?
答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.
(2)用类比方法找出的新命题一定要加以证明.
如图5-53,在△ABC和△中,,.
问:△ABC和△是否相似?
分析:可采用问答式以启发学生了解证明方法.
问:我们现在已经学习了哪几个判定三角形相似的方法?
答:①三角形的定义,②上一节学习的预备定理.
问:根据本命题条件,探讨时应采用哪种方法?为什么?
答:预备定理,因为用定义条件明显不够.
问:采用预备定理,必须构造出怎样的图形?
答:或.
问:应如何添加辅助线,才能构造出上一问的图形?
此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.
(1)在△ABC边AB(或延长线)上,截取,过D作DE∥BC交AC于E.
“作相似.证全等”.
(2)在△ABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE=,连结DE,“作全等,证相似”.
(教师向学生解释清楚“或延长线”的情况)
虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.
判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
简单说成:两角对应相等,两三角形相似.
,,
∽.
例1已知和中,,,.
求证:∽.
此例题是判定定理的直拉应用,应使学生熟练掌握.
例2直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.
已知:如图5-54,在中,CD是斜边上的高.
求证:∽∽.
该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.
即∽△∽△.
[小结]
1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.
2.判定定理1的应用以及记住例2的结论并会应用.
七、布置作业
教材P238中A组3、4.
八、板书设计
数学教案-相似三角形初中教案精选
相似三角形的性质教学示例1
(第1课时)
一、教学目标
1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.
下面我们研究相似三角形的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
∽,
,
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.
分析示意图:结论→∽(欠缺条件)→∽(已知)
∽,
BM=MC,
∽,
以上两种情况的证明可由学生完成.
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.
七、布置作业
教材P241中3、教材P247中A组3.
八、板书设计
经典初中教案数学教案-三角形全等的判定
课题:全等三角形的判定(二)
教学目标:
1、知识目标:
(1)熟记角边角公理、角角边推论的内容;
(2)能应用角边角公理及其推论证明两个三角形全等.
2、能力目标:
(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;
(2)通过观察几何图形,培养学生的识图能力.
3、情感目标:
(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.
教学重点:学会运用角边角公理及其推论证明两个三角形全等.
教学难点:sas公理、asa公理和aas推论的综合运用.
教学用具:直尺、微机
教学方法:探究类比法
教学过程:
1、新课引入
投影显示
这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”.于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案.
2、公理的获得
问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?
让学生粗略地概括出角边角的公理.然后和学生一起做实验,根据三角形全等定义对公理进行验证.
公理:有两角和它们的夹边对应相等的两个三角形全等.
应用格式:(略)
强调:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)
所以找条件归结成两句话:已知中找,图形中看.
(3)、公理与前面公理1的区别与联系.
以上几点可运用类比公理1的模式进行学习.
3、推论的获得
改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?
学生分析讨论,教师巡视,适当参与讨论.
4、公理的应用
(1)讲解例1.学生分析完成,教师注重完成后的总结.
注意区别“对应边和对边”
解:(略)
(2)讲解例2
投影例2:
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上定出证明,一名学生板书.教师强调
证明格式:用大括号写出公理的三个条件,最后写出
结论.
(3)讲解例3(投影)
例3已知:如图4△abc≌△a1b1c1,ad、a1d1分别是△abc和△a1b1c1的高.
求证:ad=a1d1
证明:(略)
学生分析思路,写出证明过程.
(投影展示学生的作业,教师点评)
(4)讲解例4(投影)
例4如图5,已知:ac∥bd,ea、eb分别平分∠cab、∠dba而交cd于e.
求证:ab=ac+bd
证明:(略)
学生口述过程.投影展示证明过程.
学生思考、分析、讨论,教师巡视,适当参与讨论.
师生共同讨论后,让学生口述证明思路.
教师强调证明线段之间关系的常见方法:截长法或补短法.
5、课堂小结:
(1)判定三角形全等的方法:sas、asa、aas
(2)三种方法的综合运用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.
6、布置作业
a书面作业p68#1、2、3
b上交作业p71b组2
思考题:
如图,已知:ad是a的平分线,ab<ac,
求证:ac-ab>oc-ob
板书设计:
探究活动
要测量河两岸相对的两点a、b的距离,可以在ab的垂线bf上取两点c、d,
使cd=bc,再作bf的垂线de,使a、c、e在一条直线上,这时测得de的长就是ab的长,如图,写出已知、求证、并且进行证明.