你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >相似三角形相关教学方案
  • 相似三角形相关教学方案

    发表时间:2022-01-26

    【www.jk251.com - 三角形相似的判定】

    在我们的初中教学中都离不开教案,教案在我们的教学生活当中十分常见,要想在教学中不断进取,其秘诀之一就是编写好教案。你是否在烦恼初中教案怎么写呢?《相似三角形相关教学方案》是小编为大家精心挑选的范文,希望你喜欢。

    教学建议

    知识结构

    本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理

    重难点分析

    的概念是本节的重点也是本节的难点.是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性.对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误.

    教法建议

    1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念

    2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念

    3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识

    4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解

    5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解

    6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握

    教学设计示例

    一、教学目标

    1.使学生理解并掌握的概念,理解相似比的概念.

    2.使学生掌握预备定理,并了解它的承上启下的作用.

    3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.

    4.通过学习,培养由特殊到一般的唯物辩证法观点.

    二、教学设计

    类比学习、探索发现.

    三、重点、难点

    1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识.

    2.教学难点:是相似比的概念及找对应边.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、常用画图工具.

    六、教学步骤

    【复习提问】

    1.什么叫做全等三角形?它在形状上、大小上有何特征?

    2.两个全等三角形的对应也和对应角有什么关系?

    【讲解新课】

    1.

    的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.

    定义:对应角相等,对应边成比例的三角形,叫做

    符号“∽”,读作:“相似于”,记作:∽,如图所示.

    ∴∽

    反之亦然.即对应角相等,对应边成比例(性质).

    ∵∽,

    另外,具有传递性(性质).

    注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.

    思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?

    (2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?

    2.相似比的概念

    对应边的比K,叫做相似比(或相似系数).

    注:①两个的相似比具有顺序性.

    如果与的相似比是K,那么与的相似比是.

    ②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形.

    3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.∽,如图所示.

    教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:

    (1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.

    (2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成BC截两边所得,其中,本质上与右图是一致的.

    (3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现的错误,如出现错误,教师要及时予以纠正.

    (4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.

    (5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有.

    【小结】

    1.本节学习了的概念.

    2.正确理解相似比的概念,为以后学习的性质打下基础.

    3.重点学习了预备定理及注意的问题.

    七、布置作业

    教材P238中2,3.

    八、板书设计

    Jk251.coM编辑推荐

    三角形相似的判定


    (第3课时)

    一、教学目标

    1.使学生了解直角三角形相似定理的证明方法并会应用.

    2.继续渗透和培养学生对类比数学思想的认识和理解.

    3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.

    4.通过学习,了解由特殊到一般的唯物辩证法的观点.

    二、教学设计

    类比学习,探讨发现

    三、重点及难点

    1.教学重点:是直角三角形相似定理的应用.

    2.教学难点:是了解直角三角形相似判定定理的证题方法与思路.

    四、课时安排

    3课时

    五、教具学具准备

    多媒体、常用画图工具、

    六、教学步骤

    [复习提问]

    1.我们学习了几种判定三角形相似的方法?(5种)

    2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写).

    其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)

    3.什么是“勾股定理”?什么是比例的合比性质?

    【讲解新课】

    类比判定直角三角形全等的“HL”方法,让学生试推出:

    直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.

    已知:如图,在∽中,

    求证:∽

    建议让学生自己写出“已知、求征”.

    这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到.应让学生对此有所了解.

    定理证明过程中的“都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题.

    例4已知:如图,,,,当BD与、之间满足怎样的关系时∽.

    解(略)

    教师在讲解例题时,应指出要使∽.应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边.

    还可提问:(1)当BD与、满足怎样的关系时∽?(答案:)

    (2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)

    (答案:或两种情况)

    探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式.”

    这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度.

    [小结]

    1.直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用.

    2.让学生了解了用代数法证几何命题的思想方法.

    3.关于探索性题目的处理.

    七、布置作业

    教材P239中A组9、教材P240中B组3.

    八、板书设计

    等腰三角形相关教学方案


    §14.3.1.1(二)

    教学目标

    1、理解并掌握等腰三角形的判定定理及推论

    2、能利用其性质与判定证明线段或角的相等关系.

    教学重点

    等腰三角形的判定定理及推论的运用

    教学难点

    正确区分等腰三角形的判定与性质.

    能够利用等腰三角形的判定定理证明线段的相等关系.

    教学过程:

    一、复习等腰三角形的性质

    二、新授:

    i提出问题,创设情境

    出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(b点)为b标,然后在这棵树的正南方(南岸a点抽一小旗作标志)沿南偏东60°方向走一段距离到c处时,测得∠acb为30°,这时,地质专家测得ac的长度就可知河流宽度.

    学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.

    ii引入新课

    1.由性质定理的题设和结论的变化,引出研究的内容——在△abc中,苦∠b=∠c,则ab=ac吗?

    作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

    2.引导学生根据图形,写出已知、求证.

    2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).

    强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.

    4.引导学生说出引例中地质专家的测量方法的根据.

    iii例题与练习

    1.如图2

    其中△abc是等腰三角形的是[]

    2.①如图3,已知△abc中,ab=ac.∠a=36°,则∠c______(根据什么?).

    ②如图4,已知△abc中,∠a=36°,∠c=72°,△abc是______三角形(根据什么?).

    ③若已知∠a=36°,∠c=72°,bd平分∠abc交ac于d,判断图5中等腰三角形有______.

    ④若已知ad=4cm,则bc______cm.

    3.以问题形式引出推论l______.

    4.以问题形式引出推论2______.

    例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.

    分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.

    练习:5.(l)如图6,在△abc中,ab=ac,∠abc、∠acb的平分线相交于点f,过f作de//bc,交ab于点d,交ac于e.问图中哪些三角形是等腰三角形?

    (2)上题中,若去掉条件ab=ac,其他条件不变,图6中还有等腰三角形吗?

    iv课堂小结

    1.判定一个三角形是等腰三角形有几种方法?

    2.判定一个三角形是等边三角形有几种方法?

    3.等腰三角形的性质定理与判定定理有何关系?

    4.现在证明线段相等问题,一般应从几方面考虑?

    v布置作业

    1.阅读教材

    2.书面作业:教材第150页第12题

    3、《课堂感悟与探究》

    相似三角形


    教学建议

    知识结构

    本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理

    重难点分析

    的概念是本节的重点也是本节的难点.是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性.对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误.

    教法建议

    1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念

    2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念

    3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识

    4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解

    5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解

    6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握

    教学设计示例

    一、教学目标

    1.使学生理解并掌握的概念,理解相似比的概念.

    2.使学生掌握预备定理,并了解它的承上启下的作用.

    3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.

    4.通过学习,培养由特殊到一般的唯物辩证法观点.

    二、教学设计

    类比学习、探索发现.

    三、重点、难点

    1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识.

    2.教学难点:是相似比的概念及找对应边.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、常用画图工具.

    六、教学步骤

    【复习提问】

    1.什么叫做全等三角形?它在形状上、大小上有何特征?

    2.两个全等三角形的对应也和对应角有什么关系?

    【讲解新课】

    1.

    的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.

    定义:对应角相等,对应边成比例的三角形,叫做

    符号“∽”,读作:“相似于”,记作:∽,如图所示.

    ∴∽

    反之亦然.即对应角相等,对应边成比例(性质).

    ∵∽,

    另外,具有传递性(性质).

    注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.

    思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?

    (2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?

    2.相似比的概念

    对应边的比K,叫做相似比(或相似系数).

    注:①两个的相似比具有顺序性.

    如果与的相似比是K,那么与的相似比是.

    ②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形.

    3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.∽,如图所示.

    教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:

    (1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.

    (2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成BC截两边所得,其中,本质上与右图是一致的.

    (3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现的错误,如出现错误,教师要及时予以纠正.

    (4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.

    (5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有.

    【小结】

    1.本节学习了的概念.

    2.正确理解相似比的概念,为以后学习的性质打下基础.

    3.重点学习了预备定理及注意的问题.

    七、布置作业

    教材P238中2,3.

    八、板书设计

    经典初中教案三角形相似的判定


    (第2课时)

    一、教学目标

    1.使学生了解判定定理2、3的证明方法并会应用.

    2.继续渗透和培养学生对类比数学思想的认识和理解.

    3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.

    4.通过学习,了解由特殊到一般的唯物辩证法的观点.

    二、教学设计

    类比学习,探讨发现

    三、重点及难点

    1.教学重点:是判定定理2、3的应用.

    2.教学难点:是了解判定定理2的证题方法与思路.

    四、课时安排

    1课时

    五、教具学具准备

    多媒体、常用画图工具、

    六、教学步骤

    [复习提问]

    1.我们已经学习了几种判定三角形相似的方法?

    2.叙述判定定理1,定理1的证题思路是什么?(①作相似,证全等,②作全等,证相似).

    [讲解新课]

    类比三角形全等判定的“SAS”让学生得出:

    判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.

    简单说成:两边对应成比例且夹角相等,两三角形相似.

    已知:如图,在和中,

    且.

    求证:∽

    建议“已知、求证”要学生自己写出.

    另外,依照判定定理1的两个证明思路,让学生自己说出辅助线的作法.

    下面判定定理3的引出与证明同判定定理2,这里从略.

    在讲解判定定理3的过程中,再一次强调使用比例证明线段相等的方法,以便使学生能够熟练掌握它.

    例3依据下列各组条件,判定与是不是相似,并证明为什么:

    (1),,

    (2),,

    解:让学生试着写出解题过程

    这种类型的题具有两层意思:一是对正确的题目加以证明;二是对不正确的题目要说出理由或举反例,但后者对于初二学生来说比较困难.为降低难度,这里的题目全是正确的,只要求学生能用学过的知识给出证明就可以了,不必研究如何判定两个三角形不相似.

    [小结]

    1.让学生了解判定定理2、3的证明思路与方法.

    2.会利用两个判定定理判定两个三角形是否相似.

    七、布置作业

    教材P238中A组5、P241中B组1.

    八、板书设计

    三角形相似的判定初中教案精选


    (第3课时)

    一、教学目标

    1.使学生了解直角三角形相似定理的证明方法并会应用.

    2.继续渗透和培养学生对类比数学思想的认识和理解.

    3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.

    4.通过学习,了解由特殊到一般的唯物辩证法的观点.

    二、教学设计

    类比学习,探讨发现

    三、重点及难点

    1.教学重点:是直角三角形相似定理的应用.

    2.教学难点:是了解直角三角形相似判定定理的证题方法与思路.

    四、课时安排

    3课时

    五、教具学具准备

    多媒体、常用画图工具、

    六、教学步骤

    [复习提问]

    1.我们学习了几种判定三角形相似的方法?(5种)

    2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写).

    其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)

    3.什么是“勾股定理”?什么是比例的合比性质?

    【讲解新课】

    类比判定直角三角形全等的“HL”方法,让学生试推出:

    直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.

    已知:如图,在∽中,

    求证:∽

    建议让学生自己写出“已知、求征”.

    这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到.应让学生对此有所了解.

    定理证明过程中的“都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题.

    例4已知:如图,,,,当BD与、之间满足怎样的关系时∽.

    解(略)

    教师在讲解例题时,应指出要使∽.应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边.

    还可提问:(1)当BD与、满足怎样的关系时∽?(答案:)

    (2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)

    (答案:或两种情况)

    探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式.”

    这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度.

    [小结]

    1.直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用.

    2.让学生了解了用代数法证几何命题的思想方法.

    3.关于探索性题目的处理.

    七、布置作业

    教材P239中A组9、教材P240中B组3.

    八、板书设计

    数学教案-三角形相似的判定教案模板


    (第2课时)

    一、教学目标

    1.使学生了解判定定理2、3的证明方法并会应用.

    2.继续渗透和培养学生对类比数学思想的认识和理解.

    3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.

    4.通过学习,了解由特殊到一般的唯物辩证法的观点.

    二、教学设计

    类比学习,探讨发现

    三、重点及难点

    1.教学重点:是判定定理2、3的应用.

    2.教学难点:是了解判定定理2的证题方法与思路.

    四、课时安排

    1课时

    五、教具学具准备

    多媒体、常用画图工具、

    六、教学步骤

    [复习提问]

    1.我们已经学习了几种判定三角形相似的方法?

    2.叙述判定定理1,定理1的证题思路是什么?(①作相似,证全等,②作全等,证相似).

    [讲解新课]

    类比三角形全等判定的“SAS”让学生得出:

    判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.

    简单说成:两边对应成比例且夹角相等,两三角形相似.

    已知:如图,在和中,

    且.

    求证:∽

    建议“已知、求证”要学生自己写出.

    另外,依照判定定理1的两个证明思路,让学生自己说出辅助线的作法.

    下面判定定理3的引出与证明同判定定理2,这里从略.

    在讲解判定定理3的过程中,再一次强调使用比例证明线段相等的方法,以便使学生能够熟练掌握它.

    例3依据下列各组条件,判定与是不是相似,并证明为什么:

    (1),,

    (2),,

    解:让学生试着写出解题过程

    这种类型的题具有两层意思:一是对正确的题目加以证明;二是对不正确的题目要说出理由或举反例,但后者对于初二学生来说比较困难.为降低难度,这里的题目全是正确的,只要求学生能用学过的知识给出证明就可以了,不必研究如何判定两个三角形不相似.

    [小结]

    1.让学生了解判定定理2、3的证明思路与方法.

    2.会利用两个判定定理判定两个三角形是否相似.

    七、布置作业

    教材P238中A组5、P241中B组1.

    八、板书设计

    三角形的中位线相关教学方案


    教学建议

    知识结构

    重难点分析

    本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

    本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.

    教法建议

    1.对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

    2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

    教学设计示例

    一、教学目标

    1.掌握中位线的概念和三角形中位线定理

    2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

    3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

    4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

    5.通过一题多解,培养学生对数学的兴趣

    二、教学设计

    画图测量,猜想讨论,启发引导.

    三、重点、难点

    1.教学重点:三角形中位线的概论与三角形中位线性质.

    2.教学难点:三角形中位线定理的证明.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、常用画图工具

    六、教学步骤

    【复习提问】

    1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

    2.说明定理的证明思路.

    3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明?

    分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证,只要即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

    4.什么叫三角形中线?(以上复习用投影仪打出)

    【引入新课】

    1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

    (结合三角形中线的定义,让学生明确两者区别,可做一练习,在中,画出中线、中位线)

    2.三角形中位线性质

    了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

    如图所示,DE是的一条中位线,如果过D作,交AC于,那么根据平行线等分线段定理推论2,得是AC的中点,可见与DE重合,所以.由此得到:三角形中位线平行于第三边.同样,过D作,且DEFC,所以DE.因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

    三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

    应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

    由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

    (l)延长DE到F,使,连结CF,由可得ADFC.

    (2)延长DE到F,使,利用对角线互相平分的四边形是平行四边形,可得ADFC.

    (3)过点C作,与DE延长线交于F,通过证可得ADFC.

    上面通过三种不同方法得出ADFC,再由得BDFC,所以四边形DBCF是平行四边形,DFBC,又因DE,所以DE.

    (证明过程略)

    例求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

    (由学生根据命题,说出已知、求证)

    已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

    求证:四边形EFGH是平行四边形.‘

    分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

    证明:连结AC.

    ∴(三角形中位线定理).

    同理,

    ∴GHEF

    ∴四边形EFGH是平行四边形.

    【小结】

    1.三角形中位线及三角形中位线与三角形中线的区别.

    2.三角形中位线定理及证明思路.

    七、布置作业

    教材P188中1(2)、4、7

    九、板书设计

    三角形全等的判定相关教学方案


    课题:三角形全等的判定(三)

    教学目标:

    1、知识目标:

    (1)掌握已知三边画三角形的方法;

    (2)掌握边边边公理,能用边边边公理证明两个三角形全等;

    (3)会添加较明显的辅助线.

    2、能力目标:

    (1)通过尺规作图使学生得到技能的训练;

    (2)通过公理的初步应用,初步培养学生的逻辑推理能力.

    3、情感目标:

    (1)在公理的形成过程中渗透:实验、观察、归纳;

    (2)通过变式训练,培养学生“举一反三”的学习习惯.

    教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

    教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

    教学用具:直尺,微机

    教学方法:自学辅导

    教学过程:

    1、新课引入

    投影显示

    问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

    这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

    2、公理的获得

    问:通过上面问题的分析,满足什么条件的两个三角形全等?

    让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

    公理:有三边对应相等的两个三角形全等。

    应用格式:(略)

    强调说明:

    (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

    (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

    (3)、此公理与前面学过的公理区别与联系

    (4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

    (5)说明AAA与SSA不能判定三角形全等。

    3、公理的应用

    (1)讲解例1。学生分析完成,教师注重完成后的点评。

    例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

    求证:AD⊥BC

    分析:(设问程序)

    (1)要证AD⊥BC只要证什么?

    (2)要证∠1=只要证什么?

    (3)要证∠1=∠2只要证什么?

    (4)△ABD和△ACD全等的条件具备吗?依据是什么?

    证明:(略)

    (2)讲解例2(投影例2)

    例2已知:如图AB=DC,AD=BC

    求证:∠A=∠C

    (1)学生思考、分析、讨论,教师巡视,适当参与讨论。

    (2)找学生代表口述证明思路。

    思路1:连接BD(如图)

    证△ABD≌△CDB(SSS)先得∠A=∠C

    思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

    (3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

    例3如图,已知AB=AC,DB=DC

    (1)若E、F、G、H分别是各边的中点,求证:EH=FG

    (2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

    学生思考、分析,适当点拨,找学生代表口述证明思路

    让学生在练习本上写出证明,然后选择投影显示。

    证明:(略)

    说明:证直线垂直可证两直线夹角等于,而由两邻补角相等证两直线的夹角等于,又是很重要的一种方法。

    例4如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,

    求证:AC=2AE.

    证明:(略)

    学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

    5、课堂小结:

    (1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)

    在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

    (2)三种方法的综合运用

    让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

    6、布置作业:

    a、书面作业P70#11、12

    b、上交作业P70#14P71B组3

    板书设计:

    【相似三角形相关教学方案】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...