你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >二次根式的混合运算
  • 二次根式的混合运算

    发表时间:2022-01-25

    【www.jk251.com - 二次根式的混合运算】

    在我们的初中教学中都离不开教案,我们可以通过教案来进行更好的教学,好的教案能更好地提高初中生的学习能力,怎样写好自己的初中教案呢?本站收集整理了一些“二次根式的混合运算”,欢迎大家阅读,希望对大家有所帮助。

    一、教学目标

    1.理解分母有理化与除法的关系.

    2.掌握二次根式的分母有理化.

    3.通过二次根式的分母有理化,培养学生的运算能力.

    4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想

    二、教学设计

    小结、归纳、提高

    三、重点、难点解决办法

    1.教学重点:分母有理化.

    2.教学难点:分母有理化的技巧.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、多媒体

    六、师生互动活动设计

    复习小结,归纳整理,应用提高,以学生活动为主

    七、教学过程

    【复习提问】

    二次根式混合运算的步骤、运算顺序、互为有理化因式.

    例1说出下列算式的运算步骤和顺序:

    (1)(先乘除,后加减).

    (2)(有括号,先去括号;不宜先进行括号内的运算).

    (3)辨别有理化因式:

    有理化因式:与,与,与…

    不是有理化因式:与,与…

    化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).

    例如,、、等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

    引入新课题.

    【引入新课】

    化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.

    例2把下列各式的分母有理化:

    (1);(2);(3)

    解:略.

    注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

    (二)随堂练习

    1.把下列各式的分母有理化:

    (1);(2);

    (3);(4).

    解:(1).

    (2).

    另解:.

    (3)

    另解:.

    通过以上例题和练习题,可以看出,有关二次根式的除法,可先写成分式的形式,然后通过分母有理化进行运算,例如:

    ,现将分母有理化,就可以了.

    ,学生易发生如下错误,将式子变形为,而正确的做法是.

    2.计算:

    (1);

    (2);

    (3).

    解:(1)

    (2)

    (3)

    (三)小结

    1.强调二次根式混合运算的法则;

    2.注意对有理化因式的概括并寻找出它的规律.

    (1)如单独一项的有理化因式就是它本身.(2)如出现和、差形式的:的有理化因式为,的有理数化因式为.

    (2)练习:教材P202中1、2.

    (四)布置作业

    教材P205中4、5.

    (五)板书设计

    标题

    1.复习内容3.练习题一

    2.例44.练习题二

    Jk251.com相关文章推荐

    二次根式的混合运算相关教学方案


    教学建议

    知识结构

    重难点分析

    本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

    本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。

    教法建议

    1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。

    2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。

    3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。

    学生特点:实验班的A层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃,,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。

    教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。

    鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:

    (一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:

    让学生先进行思考,解答。然后同学说出怎样进行。

    强调:运算顺序及运算律和有理数相同。

    (二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。

    (三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。

    学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。

    对二次根式混合运算新课引入的建议

    复习:

    1.计算:(1);(2).

    解:(1)(2)

    ==

    =;=.

    2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。

    答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积相加。用式子表示为

    m(a+b+c)=ma+mb+mc

    多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加。用式子表示为

    (a+b)(m+n)=am+an+bm+bn,

    其中a,b,m,n都是单项式。

    完全平方式是

    ;。

    在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行。引入新课。

    对二次根式混合运算学法的建议

    在进行时,也有一个与分式运算相比较的问题,有的时候,加上团式分解、约分等技巧,可以大大简化计算过程,这是要灵活运用的.因此,在本节学习时,可以适当结合11.1节的内容,复习一下在实数范围内分解因式的问题,如

    这里再顺便提一下,如

    这种变形不是原来意义上的因式分解,否则就无法进行到底了.可以说是借助因式分解的方法,或具体说成提出,等等.

    一、教学目标

    1.掌握.

    2.掌握乘法公式在混合运算的应用.

    3.通过,培养学生的运算能力.

    4.通过例题由浅入深,层层深入,激发学生求知的欲望

    二、教学设计

    小结、归纳、提高

    三、重点、难点解决办法

    1.教学重点:.

    2.教学难点:混合运算的应用.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、多媒体

    六、师生互动活动设计

    1.复习,运算律及乘法分式,引导学生口答,并强调数的运算律在根式运算中的适用,引入例题.

    2.通过例题由浅入深,层层深入,既提高学生学习的兴趣又激发学生求知的欲望;从例题的讲解中帮助寻找解题的方法,规律及注意点.

    3.通过大量的练习,以期形成自己所掌握的知识.

    七、教学步骤

    (-)明确目标

    前面学过二次根式的加减法的简单运算,但二次根式未必全是加减混合运算,它同样会出现二次根式的加、减、乘、除方等混合运算那么的法则是什么?又将怎样运用它进行化简计算,这就是本节课所要研究的问题—.

    (二)整体感知

    中,应注意运算的次序.这是进行二次根式混合运算的前提条件;通过适当地复习乘法分式,分母有理化知识,然后再进行的教学工作,将有助于更好地学习它;同样为了更好地理解还可以将它与数的运算律和运算方法进行对比,以帮助学生更好地理解并准确地掌握好该知识,达到事半功倍的作用.

    第一课时

    (-)教学过程

    【复习】

    运算律在二次根式混合运算中仍适用.

    各种整式乘法的法则.

    乘法公式:.

    提问:加法的交换律、结合律各是怎样的?乘法的交换律、结合律、分配津各是什么?

    强调数的运算律在根式运算中仍适用后,可引入例题.

    【例题】

    例1计算:

    (1);

    (2).

    解:略.

    注:①加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于学生理解和掌握.②在运算过程中,对于各个根式不一定要先化简,而是先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如,没有对先进行化简的必要,使计算繁琐,而是应先进行乘法运算,通过约分达到化简的目的.

    例2计算:

    (1);

    (2);

    (3).

    解:略.

    注:①由学生观察算式,找出特征:两个数的和与这两个数差的积;两个数的和或差的平方,联想乘法公式,与多项式的乘法相类似,二次根式的和相乘,适用乘法公式时,运用乘法公式.

    ②复习乘法公式,可选做几个小题.如,等.

    例3计算:

    (1);

    (2).

    解:略.

    ③引入有理化因式的概念

    例如,与,与.

    注:互为有理化因式是指两个代数式,其乘积不再含有二次根式.

    可适当再举例说明,如与,与、与,但与就不是互为有理化因式.

    (二)随堂练习

    计算:

    (1);(2);

    (3);(4);

    (5);(6);

    (7);(8);

    (9).

    解:(1).

    (2)

    (3)

    (4)

    (5)

    (6)

    (7).

    (8)

    (9)

    (三)总结、扩展

    对与整式的混合运算及数的混合运算比较,要注意运算的顺序及运算律在计算过程中的作用.

    有理化因式的概念需强调乘积的结果不再含有二次根式.

    练习:教材P198中1、2;教材P199中3.

    (四)布置作业

    教材P204中1、2、3.

    (五)板书设计

    标题

    1.复习内容例3……

    2.例题3.有理化因式

    例1……4.练习题

    例2……

    二次根式的混合运算的教学方案


    一、教学目标

    1.掌握二次根式的混合运算.

    2.掌握混合运算的应用.

    3.通过二次根式的混合运算,培养学生的运算能力.

    4.通过混合运算知识拓展,培养学生的探索精神

    二、教学设计

    小结、归纳、提高

    三、重点、难点解决办法

    1.教学重点:二次根式的混合运算.

    2.教学难点:混合运算的应用.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、多媒体

    六、师生互动活动设计

    复习小结,归纳整理,应用提高,以学生活动为主

    七、教学过程

    【例题】

    例1化简:

    (1);(2).

    解:(1)

    (2)

    说明:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可变换相邻项的位置,如,结果为-1,继续运算易出现符号上的差错,而把先变为,这样则为1,继续运算可避免错误.

    例2解下列方程(组):

    (1)

    (2)

    (3)

    解:(1)

    (2)①×,得

    ②×,得

    ③-④,得

    把代入①,得

    解得.

    ∴是原方程组的解.

    (3)由②,得

    ①×,得

    ③-④,得

    把代入①,得

    ∴是原方程组的解.

    例3已知,,求的值.

    解:.

    ,,

    ∴.

    例4已知,,求的值.

    解:,.

    (二)随堂练习

    1.教材中P206中8.

    2.解不等式:.

    解:

    ∴.

    3.已知,,求的值.

    解:3.,或.

    4.已知,,求:的值.

    解4.

    5.已知,求的值.

    解5..

    6.不求方根的值比较与的大小.

    解6.∵

    (三)总结、扩展

    根据已知条件,求一个代数的值,要注意条件或代数式的化简,有时条件和要求的代数式都需要化简,当把条件化简后,代数式的化简要朝着条件化简的结果去化简.

    (四)布置作业

    教材中P207B组1、3和补充作业.

    补充作业:

    1.已知,求的值.

    2.已知,,求的值.

    (五)板书设计

    标题

    1.例题……3.例题……

    2.练习题4.练习题

    八、背景知识与课外阅读

    二次根式的混和运算方法和顺序

    1.方法(1)应用二次根式乘法、除法和加减法运算法则.

    (2)在实数范围内运算律仍适用.

    (3)二次根式的乘法,与多项式的乘法相类似,遇运用多项式乘法公式时,也可以运用乘法公式.

    2.顺序先乘方、后乘除,最后加减,有括号的先算括号内的数.

    数学教案-二次根式的混合运算


    一、教学目标

    1.掌握二次根式的混合运算.

    2.掌握混合运算的应用.

    3.通过二次根式的混合运算,培养学生的运算能力.

    4.通过混合运算知识拓展,培养学生的探索精神

    二、教学设计

    小结、归纳、提高

    三、重点、难点解决办法

    1.教学重点:二次根式的混合运算.

    2.教学难点:混合运算的应用.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、多媒体

    六、师生互动活动设计

    复习小结,归纳整理,应用提高,以学生活动为主

    七、教学过程

    【例题】

    例1化简:

    (1);(2).

    解:(1)

    (2)

    说明:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可变换相邻项的位置,如,结果为-1,继续运算易出现符号上的差错,而把先变为,这样则为1,继续运算可避免错误.

    例2解下列方程(组):

    (1)

    (2)

    (3)

    解:(1)

    (2)①×,得

    ②×,得

    ③-④,得

    把代入①,得

    解得.

    ∴是原方程组的解.

    (3)由②,得

    ①×,得

    ③-④,得

    把代入①,得

    ∴是原方程组的解.

    例3已知,,求的值.

    解:.

    ,,

    ∴.

    例4已知,,求的值.

    解:,.

    (二)随堂练习

    1.教材中P206中8.

    2.解不等式:.

    解:

    ∴.

    3.已知,,求的值.

    解:3.,或.

    4.已知,,求:的值.

    解4.

    5.已知,求的值.

    解5..

    6.不求方根的值比较与的大小.

    解6.∵

    (三)总结、扩展

    根据已知条件,求一个代数的值,要注意条件或代数式的化简,有时条件和要求的代数式都需要化简,当把条件化简后,代数式的化简要朝着条件化简的结果去化简.

    (四)布置作业

    教材中P207B组1、3和补充作业.

    补充作业:

    1.已知,求的值.

    2.已知,,求的值.

    (五)板书设计

    标题

    1.例题……3.例题……

    2.练习题4.练习题

    八、背景知识与课外阅读

    二次根式的混和运算方法和顺序

    1.方法(1)应用二次根式乘法、除法和加减法运算法则.

    (2)在实数范围内运算律仍适用.

    (3)二次根式的乘法,与多项式的乘法相类似,遇运用多项式乘法公式时,也可以运用乘法公式.

    2.顺序先乘方、后乘除,最后加减,有括号的先算括号内的数.

    【二次根式的混合运算】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...