你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >二次根式的除法
  • 二次根式的除法

    发表时间:2022-01-25

    【www.jk251.com - 二次根式的除法】

    无论何时,教案都是我们准备教学的一种最好的方式,教案能够安排教学的方方面面,用心编写教案才能促进初中的教学进一步发展,如何才能写好初中教案呢?小编为大家收集整理了二次根式的除法,希望能够帮助到您。

    教学建议

    知识结构:

    重点难点分析:

    是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简.商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握.

    教学难点是与商的算术平方根的关系及应用.与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号.由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.

    教法建议:

    1.本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.

    2.本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论法则,并运用这一法则进行简单的运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化.这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开.

    3.引导学生思考“想一想”中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励中国学习联盟胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.

    教学设计示例

    一、教学目标

    1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

    2.会进行简单的运算;

    3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

    4.培养学生利用公式进行化简与计算的能力;

    5.通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

    6.通过分母有理化的教学,渗透数学的简洁性.

    二、教学重点和难点

    1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的运算,还要使学生掌握采用分母有理化的方法进行.

    2.难点:与商的算术平方根的关系及应用.

    三、教学方法

    从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节

    内容可引导学生自学,进行总结对比.

    四、教学手段

    利用投影仪.

    五、教学过程

    (一)引入新课

    学生回忆及得算数平方根和性质:(a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)

    学生观察下面的例子,并计算:

    由学生总结上面两个式的关系得:

    类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:

    (二)新课

    商的算术平方根.

    一般地,有(a≥0,b>0)

    商的算术平方根等于被除式的算术平方根除以除式的算术平方根.

    让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.

    引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.

    例1化简:

    (1);(2);(3);

    解∶(1)

    (2)

    (3)

    说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数.

    例2化简:

    (1);(2);

    解:(1)

    (2)

    让学生观察例题中分母的特点,然后提出,的问题怎样解决?

    再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况,的问题,我们将在今后的学习中解决.

    学生讨论本节课所学内容,并进行小结.

    (三)小结

    1.商的算术平方根的性质.(注意公式成立的条件)

    2.会利用商的算术平方根的性质进行简单的二次根式的化简.

    (四)练习

    1.化简:

    (1);(2);(3).

    2.化简:

    (1);(2);(3)

    六、作业

    教材P.183习题11.3;A组1.

    七、板书设计

    jk251.cOm扩展阅读

    数学教案-二次根式的除法初中教案精选


    教学建议

    知识结构:

    重点难点分析:

    是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简.商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握.

    教学难点是二次根式的除法与商的算术平方根的关系及应用.二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号.由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.

    教法建议:

    1.本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.

    2.本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化.这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开.

    3.引导学生思考“想一想”中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.

    教学设计示例

    一、教学目标

    1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

    2.会进行简单的二次根式的除法运算;

    3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

    4.培养学生利用二次根式的除法公式进行化简与计算的能力;

    5.通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

    6.通过分母有理化的教学,渗透数学的简洁性.

    二、教学重点和难点

    1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行.

    2.难点:二次根式的除法与商的算术平方根的关系及应用.

    三、教学方法

    从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节

    内容可引导学生自学,进行总结对比.

    四、教学手段

    利用投影仪.

    五、教学过程

    (一)引入新课

    学生回忆及得算数平方根和性质:(a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)

    学生观察下面的例子,并计算:

    由学生总结上面两个式的关系得:

    类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:

    (二)新课

    商的算术平方根.

    一般地,有(a≥0,b>0)

    商的算术平方根等于被除式的算术平方根除以除式的算术平方根.

    让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.

    引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.

    例1化简:

    (1);(2);(3);

    解∶(1)

    (2)

    (3)

    说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数.

    例2化简:

    (1);(2);

    解:(1)

    (2)

    让学生观察例题中分母的特点,然后提出,的问题怎样解决?

    再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况,的问题,我们将在今后的学习中解决.

    学生讨论本节课所学内容,并进行小结.

    (三)小结

    1.商的算术平方根的性质.(注意公式成立的条件)

    2.会利用商的算术平方根的性质进行简单的二次根式的化简.

    (四)练习

    1.化简:

    (1);(2);(3).

    2.化简:

    (1);(2);(3)

    六、作业

    教材P.183习题11.3;A组1.

    七、板书设计

    二次根式


    一、教学过程

    (一)复习提问

    1.什么叫二次根式?

    2.下列各式是二次根式,求式子中的字母所满足的条件:

    (3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.

    (二)二次根式的简单性质

    上节课我们已经学习了二次根式的定义,并了解了第一个简单性质

    我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:

    这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?

    请分析:引导学生答如时才成立。

    时才成立,即a取任意实数时都成立。

    我们知道

    如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.

    例1计算:

    分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。

    例2把下列非负数写成一个数的平方的形式:

    (1)5;(2)11;(3)1.6;(4)0.35.

    例3把下列各式写成平方差的形式,再分解因式:

    (1)4x2-1;(2)a4-9;

    (3)3a2-10;(4)a4-6a2+9.

    解:(1)4x2-1

    =(2x)2-12

    =(2x+1)(2x-1).

    (2)a4-9

    =(a2)2-32

    =(a2+3)(a2-3)

    (3)3a2-10

    (4)a4-6a2+32

    =(a2)2-6a2+32

    =(a2-3)2

    (三)小结

    1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.

    2.关于公式的应用。

    (1)经常用于乘法的运算中.

    (2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.

    (四)练习和作业

    练习:

    1.填空

    注意第(4)题需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.

    2.实数a、b在数轴上对应点的位置如下图所示:

    分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.

    3.计算

    二、作业

    教材P.172习题11.1;A组2、3;B组2.

    补充作业:

    下列各式中的字母满足什么条件时,才能使该式成为二次根式?

    分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:

    (1)由-|a-2b|≥0,得a-2b≤0,

    但根据绝对值的性质,有|a-2b|≥0,

    ∴|a-2b|=0,即a-2b=0,得a=2b.

    (2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0

    ∴(m2+1)(m-n)≤0,又m2+1>0,

    ∴m-n≤0,即m≤n.

    说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.

    三、板书设计

    【二次根式的除法】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...