你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >勾股定理的教学方案
  • 勾股定理的教学方案

    发表时间:2022-01-25

    大家对教案都很熟悉了吧,多写教案能够提升我们的策划能力,一份优质的教学方案往往来自教师长时间的经验累积,什么样的初中教案比较高质量?这篇《勾股定理的教学方案》应该可以帮助到您。

    教学目标:

    1、知识目标:

    (1)掌握;

    (2)学会利用进行计算、证明与作图;

    (3)了解有关的历史.

    2、能力目标:

    (1)在定理的证明中培养学生的拼图能力;

    (2)通过问题的解决,提高学生的运算能力

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过有关的历史讲解,对学生进行德育教育.

    教学重点:及其应用

    教学难点:通过有关的历史讲解,对学生进行德育教育

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习

    (1)三角形的三边关系

    (2)问题:(投影显示)

    直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

    2、定理的获得

    让学生用文字语言将上述问题表述出来.

    :直角三角形两直角边的平方和等于斜边的平方

    强调说明:

    (1)勾――最短的边、股――较长的直角边、弦――斜边

    (2)学生根据上述学习,提出自己的问题(待定)

    学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

    3、定理的证明方法

    方法一:将四个全等的直角三角形拼成如图1所示的正方形.

    方法二:将四个全等的直角三角形拼成如图2所示的正方形,

    方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

    以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

    4、定理与逆定理的应用

    例1已知:如图,在△ABC中,∠ACB=,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.

    解:∵△ABC是直角三角形,AB=5,BC=3,由有

    ∴∠2=∠C

    ∴CD的长是2.4cm

    例2如图,△ABC中,AB=AC,∠BAC=,D是BC上任一点,

    求证:

    证法一:过点A作AE⊥BC于E

    则在Rt△ADE中,

    又∵AB=AC,∠BAC=

    ∴AE=BE=CE

    证法二:过点D作DE⊥AB于E,DF⊥AC于F

    则DE∥AC,DF∥AB

    又∵AB=AC,∠BAC=

    ∴EB=ED,FD=FC=AE

    在Rt△EBD和Rt△FDC中

    在Rt△AED中,

    例3设

    求证:

    证明:构造一个边长的矩形ABCD,如图

    在Rt△ABE中

    在Rt△BCF中

    在Rt△DEF中

    在△BEF中,BE+EF>BF

    例4国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

    解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

    AD+AB+BC=3,AB+BC+CD=3

    图3中,在Rt△DGF中

    同理

    ∴图3中的路线长为

    图4中,延长EF交BC于H,则FH⊥BC,BH=CH

    由∠FBH=及得:

    EA=ED=FB=FC=

    ∴EF=1-2FH=1-

    ∴此图中总线路的长为4EA+EF=

    ∵3>2.828>2.732

    ∴图4的连接线路最短,即图4的架设方案最省电线.

    5、课堂小结:

    (1)的内容

    (2)的作用

    已知直角三角形的两边求第三边

    已知直角三角形的一边,求另两边的关系

    6、布置作业:

    a、书面作业P130#1、2、3

    b、上交作业P132#1、3

    板书设计:

    探究活动

    台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

    (1)该城市是否会受到这交台风的影响?请说明理由

    (2)若会受到台风影响,那么台风影响该城市持续时间有多少?

    (3)该城市受到台风影响的最大风力为几级?

    解:(1)由点A作AD⊥BC于D,

    则AD就为城市A距台风中心的最短距离

    在Rt△ABD中,∠B=,AB=220

    由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.

    故该城市会受到这次台风的影响.

    (2)由题意知,当A点距台风中心不超过60千米时,

    将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,

    该城市都会受到这次台风的影响

    由得

    ∴EF=2DE=

    因为这次台风中心以15千米/时的速度移动

    所以这次台风影响该城市的持续时间为小时

    (3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为级.

    jK251.COm精选阅读

    勾股定理相关教学方案


    教学目标:

    1、知识目标:

    (1)掌握;

    (2)学会利用进行计算、证明与作图;

    (3)了解有关的历史.

    2、能力目标:

    (1)在定理的证明中培养学生的拼图能力;

    (2)通过问题的解决,提高学生的运算能力

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过有关的历史讲解,对学生进行德育教育.

    教学重点:及其应用

    教学难点:通过有关的历史讲解,对学生进行德育教育

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习

    (1)三角形的三边关系

    (2)问题:(投影显示)

    直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

    2、定理的获得

    让学生用文字语言将上述问题表述出来.

    :直角三角形两直角边的平方和等于斜边的平方

    强调说明:

    (1)勾――最短的边、股――较长的直角边、弦――斜边

    (2)学生根据上述学习,提出自己的问题(待定)

    学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

    3、定理的证明方法

    方法一:将四个全等的直角三角形拼成如图1所示的正方形.

    方法二:将四个全等的直角三角形拼成如图2所示的正方形,

    方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

    以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

    4、定理与逆定理的应用

    例1已知:如图,在△ABC中,∠ACB=,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.

    解:∵△ABC是直角三角形,AB=5,BC=3,由有

    ∴∠2=∠C

    ∴CD的长是2.4cm

    例2如图,△ABC中,AB=AC,∠BAC=,D是BC上任一点,

    求证:

    证法一:过点A作AE⊥BC于E

    则在Rt△ADE中,

    又∵AB=AC,∠BAC=

    ∴AE=BE=CE

    证法二:过点D作DE⊥AB于E,DF⊥AC于F

    则DE∥AC,DF∥AB

    又∵AB=AC,∠BAC=

    ∴EB=ED,FD=FC=AE

    在Rt△EBD和Rt△FDC中

    在Rt△AED中,

    第12页

    数学教案-勾股定理的逆定理相关教学方案


    知识结构:

    重点、难点分析

    本节内容的重点是勾股定理的逆定理及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

    本节内容的难点是勾股定理的逆定理的应用.在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

    教法建议:

    本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

    (1)让学生主动提出问题

    利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

    (2)让学生自己解决问题

    判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

    (3)通过实际问题的解决,培养学生的数学意识.

    教学目标:

    1、知识目标:

    (1)理解并会证明勾股定理的逆定理;

    (2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

    (3)知道什么叫勾股数,记住一些觉见的勾股数.

    2、能力目标:

    (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

    (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过知识的纵横迁移感受数学的辩证特征.

    教学重点:勾股定理的逆定理及其应用

    教学难点:勾股定理的逆定理及其应用

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习(投影)

    勾股定理的内容

    文字叙述(投影显示)

    符号表述

    图形(画在黑板上)

    2、逆定理的获得

    (1)让学生用文字语言将上述定理的逆命题表述出来

    (2)学生自己证明

    逆定理:如果三角形的三边长有下面关系:

    那么这个三角形是直角三角形

    强调说明:(1)勾股定理及其逆定理的区别

    勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

    (2)判定直角三角形的方法:

    ①角为、②垂直、③勾股定理的逆定理

    2、定理的应用(投影显示题目上)

    例1如果一个三角形的三边长分别为

    则这三角形是直角三角形

    证明:∵

    ∵∠C=

    例2已知:如图,四边形ABCD中,∠B=,AB=3,BC=4,CD=12,AD=13求四边形ABCD的面积

    解:连结AC

    ∵∠B=,AB=3,BC=4

    ∴AC=5

    ∴∠ACD=

    例3如图,已知:CD⊥AB于D,且有

    求证:△ACB为直角三角形

    证明:∵CD⊥AB

    又∵

    ∴△ABC为直角三角形

    以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)

    4、课堂小结:

    (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

    (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用.

    5、布置作业:

    a、书面作业P131#9

    b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

    求证:△DEF是等腰三角形

    板书设计:

    探究活动

    分别以直角三角形三边为直径作三个半圆,这三个半圆的面积之间有什么关系?为什么?

    提示:设直角三角形边长分别为

    则三个半圆面积分别为

    勾股定理的逆定理教案模板


    知识结构:

    重点、难点分析

    本节内容的重点是及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

    本节内容的难点是的应用.在用时,分不清哪一条边作斜边,因此在用判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

    教法建议:

    本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

    (1)让学生主动提出问题

    利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

    (2)让学生自己解决问题

    判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

    (3)通过实际问题的解决,培养学生的数学意识.

    教学目标:

    1、知识目标:

    (1)理解并会证明;

    (2)会应用判定一个三角形是否为直角三角形;

    (3)知道什么叫勾股数,记住一些觉见的勾股数.

    2、能力目标:

    (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

    (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过知识的纵横迁移感受数学的辩证特征.

    教学重点:及其应用

    教学难点:及其应用

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习(投影)

    勾股定理的内容

    文字叙述(投影显示)

    符号表述

    图形(画在黑板上)

    2、逆定理的获得

    (1)让学生用文字语言将上述定理的逆命题表述出来

    (2)学生自己证明

    逆定理:如果三角形的三边长有下面关系:

    那么这个三角形是直角三角形

    强调说明:(1)勾股定理及其逆定理的区别

    勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

    (2)判定直角三角形的方法:

    ①角为、②垂直、③

    2、定理的应用(投影显示题目上)

    例1如果一个三角形的三边长分别为

    则这三角形是直角三角形

    证明:∵

    ∵∠C=

    第12页

    勾股定理的逆定理初中教案精选


    知识结构:

    重点、难点分析

    本节内容的重点是及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

    本节内容的难点是的应用.在用时,分不清哪一条边作斜边,因此在用判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

    教法建议:

    本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

    (1)让学生主动提出问题

    利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

    (2)让学生自己解决问题

    判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

    (3)通过实际问题的解决,培养学生的数学意识.

    教学目标:

    1、知识目标:

    (1)理解并会证明;

    (2)会应用判定一个三角形是否为直角三角形;

    (3)知道什么叫勾股数,记住一些觉见的勾股数.

    2、能力目标:

    (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

    (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过知识的纵横迁移感受数学的辩证特征.

    教学重点:及其应用

    教学难点:及其应用

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习(投影)

    勾股定理的内容

    文字叙述(投影显示)

    符号表述

    图形(画在黑板上)

    2、逆定理的获得

    (1)让学生用文字语言将上述定理的逆命题表述出来

    (2)学生自己证明

    逆定理:如果三角形的三边长有下面关系:

    那么这个三角形是直角三角形

    强调说明:(1)勾股定理及其逆定理的区别

    勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

    (2)判定直角三角形的方法:

    ①角为、②垂直、③

    2、定理的应用(投影显示题目上)

    例1如果一个三角形的三边长分别为

    则这三角形是直角三角形

    证明:∵

    ∵∠C=

    例2已知:如图,四边形ABCD中,∠B=,AB=3,BC=4,CD=12,AD=13求四边形ABCD的面积

    解:连结AC

    ∵∠B=,AB=3,BC=4

    ∴AC=5

    ∴∠ACD=

    例3如图,已知:CD⊥AB于D,且有

    求证:△ACB为直角三角形

    证明:∵CD⊥AB

    又∵

    ∴△ABC为直角三角形

    以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)

    4、课堂小结:

    (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

    (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用.

    5、布置作业:

    a、书面作业P131#9

    b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

    求证:△DEF是等腰三角形

    板书设计:

    探究活动

    分别以直角三角形三边为直径作三个半圆,这三个半圆的面积之间有什么关系?为什么?

    提示:设直角三角形边长分别为

    则三个半圆面积分别为

    经典初中教案勾股定理


    教学目标:

    1、知识目标:

    (1)掌握;

    (2)学会利用进行计算、证明与作图;

    (3)了解有关的历史.

    2、能力目标:

    (1)在定理的证明中培养学生的拼图能力;

    (2)通过问题的解决,提高学生的运算能力

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过有关的历史讲解,对学生进行德育教育.

    教学重点:及其应用

    教学难点:通过有关的历史讲解,对学生进行德育教育

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习

    (1)三角形的三边关系

    (2)问题:(投影显示)

    直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

    2、定理的获得

    让学生用文字语言将上述问题表述出来.

    :直角三角形两直角边的平方和等于斜边的平方

    强调说明:

    (1)勾――最短的边、股――较长的直角边、弦――斜边

    (2)学生根据上述学习,提出自己的问题(待定)

    学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

    3、定理的证明方法

    方法一:将四个全等的直角三角形拼成如图1所示的正方形.

    方法二:将四个全等的直角三角形拼成如图2所示的正方形,

    方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

    以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

    4、定理与逆定理的应用

    例1已知:如图,在△ABC中,∠ACB=,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.

    解:∵△ABC是直角三角形,AB=5,BC=3,由有

    ∴∠2=∠C

    ∴CD的长是2.4cm

    例2如图,△ABC中,AB=AC,∠BAC=,D是BC上任一点,

    求证:

    证法一:过点A作AE⊥BC于E

    则在Rt△ADE中,

    又∵AB=AC,∠BAC=

    ∴AE=BE=CE

    证法二:过点D作DE⊥AB于E,DF⊥AC于F

    则DE∥AC,DF∥AB

    又∵AB=AC,∠BAC=

    ∴EB=ED,FD=FC=AE

    在Rt△EBD和Rt△FDC中

    在Rt△AED中,

    例3设

    求证:

    证明:构造一个边长的矩形ABCD,如图

    在Rt△ABE中

    在Rt△BCF中

    在Rt△DEF中

    在△BEF中,BE+EF>BF

    例4国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

    解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

    AD+AB+BC=3,AB+BC+CD=3

    图3中,在Rt△DGF中

    同理

    ∴图3中的路线长为

    图4中,延长EF交BC于H,则FH⊥BC,BH=CH

    由∠FBH=及得:

    EA=ED=FB=FC=

    ∴EF=1-2FH=1-

    ∴此图中总线路的长为4EA+EF=

    ∵3>2.828>2.732

    ∴图4的连接线路最短,即图4的架设方案最省电线.

    5、课堂小结:

    (1)的内容

    (2)的作用

    已知直角三角形的两边求第三边

    已知直角三角形的一边,求另两边的关系

    6、布置作业:

    a、书面作业P130#1、2、3

    b、上交作业P132#1、3

    板书设计:

    探究活动

    台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

    (1)该城市是否会受到这交台风的影响?请说明理由

    (2)若会受到台风影响,那么台风影响该城市持续时间有多少?

    (3)该城市受到台风影响的最大风力为几级?

    解:(1)由点A作AD⊥BC于D,

    则AD就为城市A距台风中心的最短距离

    在Rt△ABD中,∠B=,AB=220

    由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.

    故该城市会受到这次台风的影响.

    (2)由题意知,当A点距台风中心不超过60千米时,

    将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,

    该城市都会受到这次台风的影响

    由得

    ∴EF=2DE=

    因为这次台风中心以15千米/时的速度移动

    所以这次台风影响该城市的持续时间为小时

    (3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为级.

    数学教案-勾股定理


    教学目标:

    1、知识目标:

    (1)掌握勾股定理;

    (2)学会利用勾股定理进行计算、证明与作图;

    (3)了解有关勾股定理的历史.

    2、能力目标:

    (1)在定理的证明中培养学生的拼图能力;

    (2)通过问题的解决,提高学生的运算能力

    3、情感目标:

    (1)通过自主学习的发展体验获取数学知识的感受;

    (2)通过有关勾股定理的历史讲解,对学生进行德育教育.

    教学重点:勾股定理及其应用

    教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育

    教学用具:直尺,微机

    教学方法:以学生为主体的讨论探索法

    教学过程:

    1、新课背景知识复习

    (1)三角形的三边关系

    (2)问题:(投影显示)

    直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

    2、定理的获得

    让学生用文字语言将上述问题表述出来.

    勾股定理:直角三角形两直角边的平方和等于斜边的平方

    强调说明:

    (1)勾――最短的边、股――较长的直角边、弦――斜边

    (2)学生根据上述学习,提出自己的问题(待定)

    学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

    3、定理的证明方法

    方法一:将四个全等的直角三角形拼成如图1所示的正方形.

    方法二:将四个全等的直角三角形拼成如图2所示的正方形,

    方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

    以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

    4、定理与逆定理的应用

    例1已知:如图,在△ABC中,∠ACB=,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.

    解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有

    ∴∠2=∠C

    ∴CD的长是2.4cm

    例2如图,△ABC中,AB=AC,∠BAC=,D是BC上任一点,

    求证:

    证法一:过点A作AE⊥BC于E

    则在Rt△ADE中,

    又∵AB=AC,∠BAC=

    ∴AE=BE=CE

    证法二:过点D作DE⊥AB于E,DF⊥AC于F

    则DE∥AC,DF∥AB

    又∵AB=AC,∠BAC=

    ∴EB=ED,FD=FC=AE

    在Rt△EBD和Rt△FDC中

    在Rt△AED中,

    例3设

    求证:

    证明:构造一个边长的矩形ABCD,如图

    在Rt△ABE中

    在Rt△BCF中

    在Rt△DEF中

    在△BEF中,BE+EF>BF

    例4国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

    解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

    AD+AB+BC=3,AB+BC+CD=3

    图3中,在Rt△DGF中

    同理

    ∴图3中的路线长为

    图4中,延长EF交BC于H,则FH⊥BC,BH=CH

    由∠FBH=及勾股定理得:

    EA=ED=FB=FC=

    ∴EF=1-2FH=1-

    ∴此图中总线路的长为4EA+EF=

    ∵3>2.828>2.732

    ∴图4的连接线路最短,即图4的架设方案最省电线.

    5、课堂小结:

    (1)勾股定理的内容

    (2)勾股定理的作用

    已知直角三角形的两边求第三边

    已知直角三角形的一边,求另两边的关系

    6、布置作业:

    a、书面作业P130#1、2、3

    b、上交作业P132#1、3

    板书设计:

    探究活动

    台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

    (1)该城市是否会受到这交台风的影响?请说明理由

    (2)若会受到台风影响,那么台风影响该城市持续时间有多少?

    (3)该城市受到台风影响的最大风力为几级?

    解:(1)由点A作AD⊥BC于D,

    则AD就为城市A距台风中心的最短距离

    在Rt△ABD中,∠B=,AB=220

    由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.

    故该城市会受到这次台风的影响.

    (2)由题意知,当A点距台风中心不超过60千米时,

    将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,

    该城市都会受到这次台风的影响

    由勾股定理得

    ∴EF=2DE=

    因为这次台风中心以15千米/时的速度移动

    所以这次台风影响该城市的持续时间为小时

    (3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为级.

    切线长定理的教学方案


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.

    难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.

    2、教法建议

    本节内容需要一个课时.

    (1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析的基本图形;对重要的结论及时总结;

    (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.

    教学目标

    1.理解切线长的概念,掌握;

    2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.

    3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.

    教学重点:

    是教学重点

    教学难点:

    的灵活运用是教学难点

    教学过程设计:

    (一)观察、猜想、证明,形成定理

    1、切线长的概念.

    如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.

    引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.

    2、观察

    利用电脑变动点P的位置,观察图形的特征和各量之间的关系.

    3、猜想

    引导学生直观判断,猜想图中PA是否等于PB.PA=PB.

    4、证明猜想,形成定理.

    猜想是否正确。需要证明.

    组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.

    想一想:根据图形,你还可以得到什么结论?

    ∠OPA=∠OPB(如图)等.

    :从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

    5、归纳:

    把前面所学的切线的5条性质与一起归纳切线的性质

    6、的基本图形研究

    如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C

    (1)写出图中所有的垂直关系;

    (2)写出图中所有的全等三角形;

    (3)写出图中所有的相似三角形;

    (4)写出图中所有的等腰三角形.

    说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.

    (二)应用、归纳、反思

    例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,

    A和B是切点,BC是直径.

    求证:AC∥OP.

    分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.

    从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.

    证法一.如图.连结AB.

    PA,PB分别切⊙O于A,B

    ∴PA=PB∠APO=∠BPO

    ∴OP⊥AB

    又∵BC为⊙O直径

    ∴AC⊥AB

    ∴AC∥OP(学生板书)

    证法二.连结AB,交OP于D

    PA,PB分别切⊙O于A、B

    ∴PA=PB∠APO=∠BPO

    ∴AD=BD

    又∵BO=DO

    ∴OD是△ABC的中位线

    ∴AC∥OP

    证法三.连结AB,设OP与AB弧交于点E

    PA,PB分别切⊙O于A、B

    ∴PA=PB

    ∴OP⊥AB

    ∴=

    ∴∠C=∠POB

    ∴AC∥OP

    反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.

    第12页

    切线长定理相关教学方案


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.

    难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.

    2、教法建议

    本节内容需要一个课时.

    (1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析的基本图形;对重要的结论及时总结;

    (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.

    教学目标

    1.理解切线长的概念,掌握;

    2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.

    3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.

    教学重点:

    是教学重点

    教学难点:

    的灵活运用是教学难点

    教学过程设计:

    (一)观察、猜想、证明,形成定理

    1、切线长的概念.

    如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.

    引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.

    2、观察

    利用电脑变动点P的位置,观察图形的特征和各量之间的关系.

    3、猜想

    引导学生直观判断,猜想图中PA是否等于PB.PA=PB.

    4、证明猜想,形成定理.

    猜想是否正确。需要证明.

    组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.

    想一想:根据图形,你还可以得到什么结论?

    ∠OPA=∠OPB(如图)等.

    :从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

    5、归纳:

    把前面所学的切线的5条性质与一起归纳切线的性质

    6、的基本图形研究

    如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C

    (1)写出图中所有的垂直关系;

    (2)写出图中所有的全等三角形;

    (3)写出图中所有的相似三角形;

    (4)写出图中所有的等腰三角形.

    说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.

    (二)应用、归纳、反思

    例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,

    A和B是切点,BC是直径.

    求证:AC∥OP.

    分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.

    从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.

    证法一.如图.连结AB.

    PA,PB分别切⊙O于A,B

    ∴PA=PB∠APO=∠BPO

    ∴OP⊥AB

    又∵BC为⊙O直径

    ∴AC⊥AB

    ∴AC∥OP(学生板书)

    证法二.连结AB,交OP于D

    PA,PB分别切⊙O于A、B

    ∴PA=PB∠APO=∠BPO

    ∴AD=BD

    又∵BO=DO

    ∴OD是△ABC的中位线

    ∴AC∥OP

    证法三.连结AB,设OP与AB弧交于点E

    PA,PB分别切⊙O于A、B

    ∴PA=PB

    ∴OP⊥AB

    ∴=

    ∴∠C=∠POB

    ∴AC∥OP

    反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.

    例2、圆的外切四边形的两组对边的和相等.

    (分析和解题略)

    反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.

    P120练习:

    练习1填空

    如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________

    练习2已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长.

    分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x,y,z的方程组,解方程组便可求出结果.

    (解略)

    反思:解这个题时,除了要用三角形内切圆的概念和之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.

    (三)小结

    1、提出问题学生归纳

    (1)这节课学习的具体内容;

    (2)学习用的数学思想方法;

    (3)应注意哪些概念之间的区别?

    2、归纳基本图形的结论

    3、学习了用代数方法解决几何问题的思想方法.

    (四)作业

    教材P131习题7.4A组1.(1),2,3,4.B组1题.

    探究活动

    图中找错

    你能找出(图1)与(图2)的错误所在吗?

    在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线.

    提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上.

    在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有

    a=P1A=P1P3+P3A=P1P3+c①

    c=P3C=P2P3+P3A=P2P3+b②

    a=P1B=P1P2+P2B=P1P2+b③

    将②代人①式得

    a=P1P3+(P2P3+b)=P1P3+P2P3+b,

    ∴a-b=P1P3+P2P3

    由③得a-b=P1P2得

    ∴P1P2=P2P3+P1P3

    ∴P1、P2、P3应重合,故图2是错误的.

    【勾股定理的教学方案】相关推荐
    动物在自然界中的作用初中教案精选

    一、教学目标1、能举例说明动物在维持生态平衡、促进生态系统的物质循环和帮助植物传粉、传播种子等方面的作用。2、认同动物是生物圈中重要成员的观点,培养学生爱护动物、保护动物的情感。3、学会用辩证的观点来...

    第 生物的进化教案

    第2节生物的进化一.教学目标:1.列举古生物学化石方面的证据说明生物是进化的;2.简述达尔文的自然选择学说的主要内容;3.形成生物进化的基本观点。二.教学重难点:4.生物化石的形成过程和化石记录的生物...