你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >第全等三角形期末总复习资料
  • 第全等三角形期末总复习资料

    发表时间:2022-01-23

    【www.jk251.com - 全等三角形】

    提起教案,我相信大家都不陌生,教案在我们的教学生活当中十分常见,通过教案可以帮助自己分析教学的重点,优秀的初中教案是什么样子的?小编为你推荐《第全等三角形期末总复习资料》,希望您喜欢。

    本章需要理解掌握的知识点有:

    一、全等三角形的定义(能够完全重合的两个三角形叫做全等三角形);

    二、在全等三角形中找对应边和对应角

    1、公共边是对应边;2、对应角的对边是对应边;

    3、公共角是对应角;4、对顶角是对应角;5、对应边的对角是对应角。

    三、全等三角形的性质:全等三角形的对应边相等、对应角相等。

    全等三角形的周长相等、面积相等

    全等三角形的对应线段都相等

    四、判定三角形全等的方法:基本事实:sas,asa,sss,定理aas,

    判定直角三角形全等的方法:基本事实:sas,asa,sss,定理aas,hl

    五、证明题的思考思路:拿到证明题首先看是证明什么的,比如是要证明线段相等,那就要看这两条线段在哪两个三角形中,结合图形看一看这两个三角形是否全等,结合全等证明的依据看全等条件可够,不够的条件能否从其他已知条件中得到;再结合已知条件看从给的已知条件能得到什么,两头一凑,基本上证明思路就出来了。

    六、证明角相等的依据

    1、由角平分线得角相等;

    2、同角或等角的余角相等

    3、同角或等角的补角相等

    3、由平行线得角相等或角的互补;

    4、三角形内角和是180度;

    5、全等三角形的对应角相等;

    6、三角形的外角等于与它不相邻的两内角和;

    七、证明线段相等的依据

    全等三角形的对应边相等

    八、证明角不等的依据

    三角形的外角大于与它不相邻的任一内角

    九、证明线段不等的依据

    三角形两边之和大于第三边

    图形平移不改变图形形状和大小,只改变位置。

    jK251.COm精选阅读

    第三角形的边角关系命题与证明期末总复习资料的教学方案


    本章需要理解掌握的知识点有:

    一、三角形的概念(要注意“不在同一直线上”)

    二、三角形边的关系

    1、按边分类:不等边三角形;

    等腰三角形(包括等边三角形)

    2、特殊三角形:等腰三角形,腰、底边;顶角、底角。

    3、三边之间关系:三角形任何两边之和大于第三边

    三角形任何两边之差小于第三边

    4、三边关系应用:已知两边求第三边取值范围(第三边小于两边之和、大于两边之差的绝对值);

    已知三条线段的长,判断能否构成三角形

    (只要看“两条较小线段的长度和是否大于最长线段)

    证明线段不等关系

    (只要是证明线段不等关系的题目,都要考虑用”三角形两边之和大于第三边“来证,那么。首先要出现三角形,然后在三角形中来证明)

    三、三角形角之间关系

    1、按角分类:直角三角形;

    斜三角形(包括锐角三角形和钝角三角形)

    2、特殊三角形:直角三角形,直角边、斜边。

    3、三角之间关系:三角形内角和是180度

    4、三角关系应用:求角度

    证明角的不等关系

    四、三角形中重要线段

    1、三角形的角平分线(1、三角形的角平分线是线段,2、角平分线的交点叫三角形的内心)

    2、三角形的中线(1、中线把三角形分成了两个面积相等的三角形,2、中线的交点叫重心,3、遇到中线的问题如果难以解决,则加倍延长中线)

    3、三角形的高(1、高并不一定在内部,2、把握高的定义是作三角形高的基础,3、高的交点叫垂心,4、牵扯到高的题目通常用面积相等来解决)

    探究几何图形的性质可以通过观察、操作和实验的方法。但这些方法得到的结论有时候是近似的、甚至是错误的。要想结论使人信服就要用到推理、推理就需要思维、思维就需要作出判断,判断的语句就是命题。

    五、命题

    1、命题的定义

    2、真、假命题

    3、命题的构成

    4、命题的形式

    5、互逆命题

    六、证明一个命题是假命题的方法:举反例(例子要“符合命题的题设,但不符合命题的结论”)

    七、证明一个命题是真命题要用推理的方法。

    八、命题的证明

    1、把命题改写成“如果p,那么q”的形式,找出题设和结论,p就是题设、q就是结论

    2、画出符合题意的图形,并标明字母

    3、结合图形写出已知、和求证:在已知中写题设;在求证中写结论

    4、分析证明思路(执果索因)

    5、写出证明过程:每一步都要有依据。

    全等三角形


    课题:

    教学目标:

    1、知识目标:

    (1)知道什么是全等形、及的对应元素;

    (2)知道的性质,能用符号正确地表示两个三角形全等;

    (3)能熟练找出两个的对应角、对应边。

    2、能力目标:

    (1)通过角有关概念的学习,提高学生数学概念的辨析能力;

    (2)通过找出的对应元素,培养学生的识图能力。

    3、情感目标:

    (1)通过感受的对应美激发学生热爱科学勇于探索的精神;

    (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

    教学重点:的性质。

    教学难点:找的对应边、对应角

    教学用具:直尺、微机

    教学方法:自学辅导式

    教学过程:

    1、全等形及概念的引入

    (1)动画(几何画板)显示:

    问题:你能发现这两个三角形有什么美妙的关系吗?

    一般学生都能发现这两个三角形是完全重合的。

    (2)学生自己动手

    画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

    (3)获取概念

    让学生用自己的语言叙述:

    、对应顶点、对应角以及有关数学符号。

    2、性质的发现:

    (1)电脑动画显示:

    问题:对应边、对应角有何关系?

    由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

    3、找对应边、对应角以及性质的应用

    (1)投影显示题目:

    D、AD∥BC,且AD=BC

    分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

    说明:本题的解题关键是要知道中两个中,对应顶点定在对应的位置上,易错点是容易找错对应角。

    分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

    说明:根据位置元素来找:有相等元素,其即为对应元素:

    然后依据已知的对应元素找:(1)对应角所对的边是对应边,两个对应角所夹的边是对应边(2)对应边所对的角是对应角,两条对应边所夹的角是对应角。

    说明:利用“运动法”来找

    翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

    旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

    平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

    第12页

    数学教案-全等三角形


    课题:全等三角形

    教学目标:

    1、知识目标:

    (1)知道什么是全等形、全等三角形及全等三角形的对应元素;

    (2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

    (3)能熟练找出两个全等三角形的对应角、对应边。

    2、能力目标:

    (1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

    (2)通过找出全等三角形的对应元素,培养学生的识图能力。

    3、情感目标:

    (1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

    (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

    教学重点:全等三角形的性质。

    教学难点:找全等三角形的对应边、对应角

    教学用具:直尺、微机

    教学方法:自学辅导式

    教学过程:

    1、全等形及全等三角形概念的引入

    (1)动画(几何画板)显示:

    问题:你能发现这两个三角形有什么美妙的关系吗?

    一般学生都能发现这两个三角形是完全重合的。

    (2)学生自己动手

    画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

    (3)获取概念

    让学生用自己的语言叙述:

    全等三角形、对应顶点、对应角以及有关数学符号。

    2、全等三角形性质的发现:

    (1)电脑动画显示:

    问题:对应边、对应角有何关系?

    由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

    3、找对应边、对应角以及全等三角形性质的应用

    (1)投影显示题目:

    D、AD∥BC,且AD=BC

    分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

    说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

    分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

    说明:根据位置元素来找:有相等元素,其即为对应元素:

    然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

    说明:利用“运动法”来找

    翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

    旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

    平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

    求证:AE∥CF

    分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

    ∴AE∥CF

    说明:解此题的关键是找准对应角,可以用平移法。

    分析:AB不是全等三角形的对应边,

    但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

    可利用已知的AD与BC求得。

    说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

    (2)题目的解决

    这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

    投影显示:

    (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

    (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

    (3)有公共边的,公共边一定是对应边;

    (4)有公共角的,角一定是对应角;

    (5)有对顶角的,对顶角一定是对应角;

    两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

    4、课堂独立练习,巩固提高

    此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

    5、小结:

    (1)如何找全等三角形的对应边、对应角(基本方法)

    (2)全等三角形的性质

    (3)性质的应用

    让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

    6、布置作业

    a.书面作业P55#2、3、4

    b.上交作业(中考题)

    思考题:

    板书设计:

    探究活动

    (2)证明:AF∥DE

    全等三角形的教学方案


    课题:

    教学目标:

    1、知识目标:

    (1)知道什么是全等形、及的对应元素;

    (2)知道的性质,能用符号正确地表示两个三角形全等;

    (3)能熟练找出两个的对应角、对应边。

    2、能力目标:

    (1)通过角有关概念的学习,提高学生数学概念的辨析能力;

    (2)通过找出的对应元素,培养学生的识图能力。

    3、情感目标:

    (1)通过感受的对应美激发学生热爱科学勇于探索的精神;

    (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

    教学重点:的性质。

    教学难点:找的对应边、对应角

    教学用具:直尺、微机

    教学方法:自学辅导式

    教学过程:

    1、全等形及概念的引入

    (1)动画(几何画板)显示:

    问题:你能发现这两个三角形有什么美妙的关系吗?

    一般学生都能发现这两个三角形是完全重合的。

    (2)学生自己动手

    画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

    (3)获取概念

    让学生用自己的语言叙述:

    、对应顶点、对应角以及有关数学符号。

    2、性质的发现:

    (1)电脑动画显示:

    问题:对应边、对应角有何关系?

    由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

    3、找对应边、对应角以及性质的应用

    (1)投影显示题目:

    D、AD∥BC,且AD=BC

    分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

    说明:本题的解题关键是要知道中两个中,对应顶点定在对应的位置上,易错点是容易找错对应角。

    分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

    说明:根据位置元素来找:有相等元素,其即为对应元素:

    然后依据已知的对应元素找:(1)对应角所对的边是对应边,两个对应角所夹的边是对应边(2)对应边所对的角是对应角,两条对应边所夹的角是对应角。

    说明:利用“运动法”来找

    翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

    旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

    平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

    求证:AE∥CF

    分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

    ∴AE∥CF

    说明:解此题的关键是找准对应角,可以用平移法。

    分析:AB不是的对应边,

    但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

    可利用已知的AD与BC求得。

    说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

    (2)题目的解决

    这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

    投影显示:

    (1)对应角所对的边是对应边,两个对应角所夹的边是对应边;

    (2)对应边所对的角是对应角,两条对应边所夹的角是对应角;

    (3)有公共边的,公共边一定是对应边;

    (4)有公共角的,角一定是对应角;

    (5)有对顶角的,对顶角一定是对应角;

    两个中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

    4、课堂独立练习,巩固提高

    此练习,主要加强学生的识图能力,同时,找准的对应边、对应角,是以后学好几何的关键。

    5、小结:

    (1)如何找的对应边、对应角(基本方法)

    (2)的性质

    (3)性质的应用

    让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

    6、布置作业

    a.书面作业P55#2、3、4

    b.上交作业(中考题)

    思考题:

    板书设计:

    探究活动

    (2)证明:AF∥DE
    【第全等三角形期末总复习资料】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...