你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >数学教案-代数式
  • 数学教案-代数式

    发表时间:2022-01-21

    【www.jk251.com - 列代数式】

    初中教师经常会接触到教案的撰写,教案有利于教学水平的提高,要想在初中教学中不断提升自己,教案必不可少。自己的初中教案如何写呢?小编为你推荐《数学教案-代数式》,希望您喜欢。

    教学目标

    1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

    2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

    3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

    4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

    教学建议

    1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

    2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

    (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

    (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,都是代数式.

    (3)代数式是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个代数式有几种运算和运算顺序。代数式不含表示关系的符号,如等号、不等号.如,,等都是代数式,而,,,等都不是代数式.

    3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

    如:说出代数式7(a-3)的意义。

    分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

    4.书写代数式的注意事项:

    (1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“”或省略不写,同时要求数字应写在字母前面.如,应写作或写作,应写作或写作.带分数与字母相乘,应把带分数化成假分数,如应写成.数字与数字相乘一般仍用“×”号.

    (2)代数式中有除法运算时,一般按照分数的写法来写.如:应写作

    (3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

    5.对本节例题的分析:

    例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

    例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

    6.教法建议

    (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

    (2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

    (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

    (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

    (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

    7.教学重点、难点:

    重点:用字母表示数的意义

    难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

    教学设计示例

    代数式

    教学目标

    1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

    2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

    3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

    4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.

    教学重点和难点

    重点:用字母表示数的意义

    难点:学会用字母表示数及正确地说出代数式所表示的数量关系

    课堂教学过程设计

    一、从学生原有的认知结构提出问题

    1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

    (通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

    (1)加法交换律a+b=b+a;

    (2)乘法交换律ab=ba;

    (3)加法结合律(a+b)+c=a+(b+c);

    (4)乘法结合律(ab)c=a(bc);

    (5)乘法分配律a(b+c)=ab+ac

    指出:(1)“×”也可以写成“”号或者省略不写,但数与数之间相乘,一般仍用“×”;

    (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

    2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

    3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

    4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

    (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

    此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

    三、讲授新课

    1代数式

    单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

    2举例说明

    例1填空:

    (1)每包书有12册,n包书有__________册;

    (2)温度由t℃下降到2℃后是_________℃;

    (3)棱长是a厘米的正方体的体积是_____立方厘米;

    (4)产量由m千克增长10%,就达到_______千克

    (此例题用投影给出,学生口答完成)

    解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m

    例2说出下列代数式的意义:

    (1)2a+3(2)2(a+3);(3)(4)a-(5)a2+b2(6)(a+b)2

    解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

    (3)的意义是c除以ab的商;(4)a-的意义是a减去的差;

    (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

    说明:(1)本题应由教师示范来完成;

    (2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

    例3用代数式表示:

    (1)m与n的和除以10的商;

    (2)m与5n的差的平方;

    (3)x的2倍与y的和;

    (4)ν的立方与t的3倍的积

    分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

    解:(1);(2)(m-5n)2(3)2x+y;(4)3tν3

    四、课堂练习

    1填空:(投影)

    (1)n箱苹果重p千克,每箱重_____千克;

    (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

    (3)底为a,高为h的三角形面积是______;

    (4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____

    2说出下列代数式的意义:(投影)

    (1)2a-3c;(2);(3)ab+1;(4)a2-b2

    3用代数式表示:(投影)

    (1)x与y的和;(2)x的平方与y的立方的差;

    (3)a的60%与b的2倍的和;(4)a除以2的商与b除3的商的和

    五、师生共同小结

    首先,提出如下问题:

    1本节课学习了哪些内容?2用字母表示数的意义是什么?

    3什么叫代数式?

    教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号

    六、作业

    1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

    2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

    3飞机的速度是汽车的40倍,自行车的速度是汽车的,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

    4a千克大米的售价是6元,1千克大米售多少元?

    5圆的半径是R厘米,它的面积是多少?

    6用代数式表示:

    (1)长为a,宽为b米的长方形的周长;

    (2)宽为b米,长是宽的2倍的长方形的周长;

    (3)长是a米,宽是长的的长方形的周长;

    (4)宽为b米,长比宽多2米的长方形的周长

    Jk251.com相关文章推荐

    数学教案-代数式的值教案模板


    教学目标

    1.使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;

    2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

    教学建议

    1.重点和难点:正确地求出代数式的值。

    2.理解代数式的值:

    (1)一个代数式的值是由代数式中字母的取值而决定的.所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈代数式的值时,必须指明在什么条件下.如:对于代数式;当时,代数式的值是0;当时,代数式的值是2.

    (2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如:中不能取1,因为时,分母为零,式于无意义;如果式子中字母表示长方形的长,那么它必须大于0.

    3.求代数式的值的一般步骤:

    在代数式的值的概念中,实际也指明了求代数式的值的方法.即一是代入,二是计算.求代数式的值时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.

    4。求代数式的值时的注意事项:

    (1)代数式中的运算符号和具体数字都不能改变。

    (2)字母在代数式中所处的位置必须搞清楚。

    (3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。

    5.本节知识结构:

    本小节从一个应用代数式的实例出发,引出代数式的值的概念,进而通过两个例题讲述求代数式的值的方法.

    6.教学建议

    (1)代数式的值是由代数式里的字母所取的值决定的,因此在教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念.

    (2)列代数式是由特殊到一般,而求代数式的值,则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想.

    教学设计示例

    代数式的值(一)

    教学目标

    1使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;

    2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

    教学重点和难点

    重点和难点:正确地求出代数式的值

    课堂教学过程设计

    一、从学生原有的认识结构提出问题

    1用代数式表示:(投影)

    (1)a与b的和的平方;(2)a,b两数的平方和;

    (3)a与b的和的50%

    2用语言叙述代数式2n+10的意义

    3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)

    某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

    若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

    最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值这就是本节课我们将要学习研究的内容

    二、师生共同研究代数式的值的意义

    1用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值

    2结合上述例题,提出如下几个问题:

    (1)求代数式2x+10的值,必须给出什么条件?

    (2)代数式的值是由什么值的确定而确定的?

    当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象

    然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应

    (3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

    下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)

    例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值

    解:当x=7,y=4,z=0时,

    x(2x-y+3z)=7×(2×7-4+3×0)

    =7×(14-4)

    =70

    注意:如果代数式中省略乘号,代入后需添上乘号

    例2根据下面a,b的值,求代数式a2-的值

    (1)a=4,b=12,(2)a=1,b=1

    解:(1)当a=4,b=12时,

    a2-=42-=16-3=13;

    (2)当a=1,b=1时,

    a2-=-=

    注意(1)如果字母取值是分数,作乘方运算时要加括号;

    (2)注意书写格式,“当……时”的字样不要丢;

    (3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果

    三、课堂练习

    1(1)当x=2时,求代数式x2-1的值;

    (2)当x=,y=时,求代数式x(x-y)的值

    2当a=,b=时,求下列代数式的值:

    (1)(a+b)2;(2)(a-b)2

    3当x=5,y=3时,求代数式的值

    答案:1.(1)3;(2);2.(1);(2);3..

    四、师生共同小结

    首先,请学生回答下面问题:

    1本节课学习了哪些内容?

    2求代数式的值应分哪几步?

    3在“代入”这一步应注意什么”

    其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.

    五、作业

    当a=2,b=1,c=3时,求下列代数式的值:

    (1)c-(c-a)(c-b);(2).

    代数式的值(二)

    教学目标

    1.使学生掌握代数式的值的概念,会求代数式的值;

    2.培养学生准确地运算能力,并适当地渗透对应的思想.

    教学重点和难点

    重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.

    难点:正确地求出代数式的值.

    课堂教学过程设计

    一、从学生原有的认识结构提出问题

    1.用代数式表示:(投影)

    (1)a与b的和的平方;(2)a,b两数的平方和;

    (3)a与b的和的50%.

    2.用语言叙述代数式2n+10的意义.

    3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)

    某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

    若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

    最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.

    二、师生共同研究代数式的值的意义

    1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值.

    2.结合上述例题,提出如下几个问题:

    (1)求代数式2n+10的值,必须给出什么条件?

    (2)代数式的值是由什么值的确定而确定的?

    当教师引导学生说出:“代数式的值是由代数式

    里字母的取值的确定而确定的”之后,可用图示帮助

    学生加深印象.

    然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.

    (3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

    下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)

    例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.

    解:当x=7,y=4,z=0时,

    x(2x-y+3z)=7×(2×7-4+3×0)

    =7×(14-4)

    =70.

    注意:如果代数式中省略乘号,代入后需添上乘号.

    解:(1)当a=4,b=12时,

    a2-=42-=16-3=13;

    注意(1)如果字母取值是分数,作乘方运算时要加括号;

    (2)注意书写格式,“当……时”的字样不要丢;

    (3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.

    最后,请学生总结出求代数值的步骤:

    ①代入数值②计算结果

    三、课堂练习

    1.(1)当x=2时,求代数式x2-1的值;

    2.填表:(投影)

    (1)(a+b)2;(2)(a-b)2.

    四、师生共同小结

    首先,请学生回答下面问题:

    1.本节课学习了哪些内容?2.求代数式的值应分哪几步?

    3.在“代入”这一步应注意什么?

    其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.

    五、作业

    1.当a=2,b=1,c=3时,求下列代数式的值:

    2.填表

    3.填表

    课堂教学设计说明

    由于代数式的值是由代数式里的字母所取的值决定的,因此在设计教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念。

    代数式的教学方案


    教学目标

    1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

    2.了解的概念,使学生能说出一个所表示的数量关系;

    3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

    4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

    教学建议

    1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出的概念。

    2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对的概念课文没有直接给出,而是用实例形象地说明了的概念。对的概念可以从三个方面去理解:

    (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

    (2)中并不要求数和表示数的字母同时出现,单独的一个数和字母也是.如:2,都是.

    (3)是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个有几种运算和运算顺序。不含表示关系的符号,如等号、不等号.如,,等都是,而,,,等都不是.

    3.教学难点分析:能正确说出一个的数量关系,即用语言表达的意义,一定要理清中含有的各种运算及其顺序。用语言表达的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

    如:说出7(a-3)的意义。

    分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

    4.书写的注意事项:

    (1)中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.如,应写作或写作,应写作或写作.带分数与字母相乘,应把带分数化成假分数,如应写成.数字与数字相乘一般仍用“×”号.

    (2)中有除法运算时,一般按照分数的写法来写.如:应写作

    (3)含有加减运算的需注明单位时,一定要把整个式子括起来.

    5.对本节例题的分析:

    例1是用表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的表示,课文安排在下一节中专门介绍.

    例2是说出一些比较简单的的意义.因为中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

    6.教法建议

    (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

    (2)在本节的学习过程中,要使学生理解的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是,理清中的运算和运算顺序,才能正确说出一个所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列做准备。

    (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

    (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

    (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

    7.教学重点、难点:

    重点:用字母表示数的意义

    难点:学会用字母表示数及正确说出一个所表示的数量关系。

    教学设计示例

    教学目标

    1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

    2.了解的概念,使学生能说出一个所表示的数量关系;

    3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

    4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.

    教学重点和难点

    重点:用字母表示数的意义

    难点:学会用字母表示数及正确地说出所表示的数量关系

    课堂教学过程设计

    一、从学生原有的认知结构提出问题

    1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

    (通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

    (1)加法交换律a+b=b+a;

    (2)乘法交换律a·b=b·a;

    (3)加法结合律(a+b)+c=a+(b+c);

    (4)乘法结合律(ab)c=a(bc);

    (5)乘法分配律a(b+c)=ab+ac

    指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

    (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

    2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

    3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

    4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

    (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

    此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,以及a2等等都叫.那么究竟什么叫呢?的意义又是什么呢?这正是本节课我们将要学习的内容.

    三、讲授新课

    1

    单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫.学习代数,首先要学习用表示数量关系,明确代数上的意义

    2举例说明

    例1填空:

    (1)每包书有12册,n包书有__________册;

    (2)温度由t℃下降到2℃后是_________℃;

    (3)棱长是a厘米的正方体的体积是_____立方厘米;

    (4)产量由m千克增长10%,就达到_______千克

    (此例题用投影给出,学生口答完成)

    解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m

    例2说出下列的意义:

    (1)2a+3(2)2(a+3);(3)(4)a-(5)a2+b2(6)(a+b)2

    解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

    (3)的意义是c除以ab的商;(4)a-的意义是a减去的差;

    (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

    说明:(1)本题应由教师示范来完成;

    (2)对于的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

    例3用表示:

    (1)m与n的和除以10的商;

    (2)m与5n的差的平方;

    (3)x的2倍与y的和;

    (4)ν的立方与t的3倍的积

    分析:用表示用语言叙述的数量关系要注意:①弄清中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

    解:(1);(2)(m-5n)2(3)2x+y;(4)3tν3

    四、课堂练习

    1填空:(投影)

    (1)n箱苹果重p千克,每箱重_____千克;

    (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

    (3)底为a,高为h的三角形面积是______;

    (4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____

    2说出下列的意义:(投影)

    (1)2a-3c;(2);(3)ab+1;(4)a2-b2

    3用表示:(投影)

    (1)x与y的和;(2)x的平方与y的立方的差;

    (3)a的60%与b的2倍的和;(4)a除以2的商与b除3的商的和

    五、师生共同小结

    首先,提出如下问题:

    1本节课学习了哪些内容?2用字母表示数的意义是什么?

    3什么叫?

    教师在学生回答上述问题的基础上,指出:①实际上就是算式,字母像数字一样也可以进行运算;②在和运算结果中,如有单位时,要正确地使用括号

    六、作业

    1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

    2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

    3飞机的速度是汽车的40倍,自行车的速度是汽车的,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

    4a千克大米的售价是6元,1千克大米售多少元?

    5圆的半径是R厘米,它的面积是多少?

    6用表示:

    (1)长为a,宽为b米的长方形的周长;

    (2)宽为b米,长是宽的2倍的长方形的周长;

    (3)长是a米,宽是长的的长方形的周长;

    (4)宽为b米,长比宽多2米的长方形的周长

    数学教案-二次三项式的因式分解


    一、教学目标

    1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系;

    2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;

    3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力;

    4.通过二次三项式因式分解方法的推导,进一步向学生渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般;

    5.通过利用一元二次方程根的知识来分解因式,渗透知识间是普遍联系的数学美。

    二、重点难点疑点及解决办法

    1.教学重点:用公式法将二次三项式因式分解。

    2.教学难点:一元二次方程的根与二次三项式因式分解的关系。

    3.教学疑点:一个二次三项式在实数范围内因式分解的条件。

    4.解决办法:二次三项式能分解因式

    二次三项式不能分解

    二次三项式分解成完全平方式

    三、教学步骤

    (一)教学过程

    1.复习提问

    (1)写出关于x的二次三项式?

    (2)将下列二次三项式在实数范围因式分解。

    ①;②;③。

    由③感觉比较困难,引出本节课所要解决的问题。

    2.新知讲解

    (1)引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系。

    ①;

    解:原式变形为。

    ∴,

    ②;

    解原方程可变为

    观察以上各例,可以看出1,2是方程的两个根,而,……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式。

    (2)推导出公式

    设方程的两个根为,那么,

    这就是说,在分解二次三项式的因式时,可先用公式求出方程的两个根,然后写成

    教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊。

    (3)公式的应用

    例1把分解因式

    解:∵方程的根是

    教师板书,学生回答。

    由①到②是把4分解成2×2分别与两个因式相乘所得到的,目的是化简①。

    练习:将下列各式在实数范围因式分解。

    (1);(2)

    学生板书、笔答,评价。

    例2用两种方程把分解因式。

    方法一,解:

    方法二,解:,

    方法一比方法二简单,要求学生灵活选择,择其简单的方法。

    练习:将下列各式因式分解。

    学生练习,板书,选择恰当的方法,教师引导,注意以下两点:

    (1)要注意一元二次方程与二次三项式的区别与联系,例如方程,可变形为;但将二次三项式分解因式时,就不能将变形为。

    例如用求根公式求得的两个根是后,得出这就错了,这是因为丢掉了系数2。

    (2)还要注意符号方面的错误,比如下面的例子如果写成也是错误的。

    (3)一元二次方程当时,方程有两个实根。当时,方程无实根。这就决定了:当时,二次三项式在实数范围内可以分解;当时,二次三项式在实数范围内不可以分解。

    (二)总结、扩展

    1.用公式法将二次三项式因式分解的步骤是先求出方程的两个根,再将写成形式。

    2.二次三项式因式分解的条件是:当,二次三项式在实数范围内可以分解;时,二次三项式在实数范围内不可以分解。

    3.通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律。

    四、布置作业

    教材P38A1,2。

    五、板书设计

    数学教案-数学


    数怎么不够用了

    年级:初一执笔:徐城审核:授课时间:2004/9/16

    2、掌握有理数的两种分类方法;

    3、熟练地将有理数按一定的要求分类。

    一、前提测评:

    1、请同学们完成下列计算:(注意观察图形所表达的含义)

    加10分扣10分得0分

    集体举行知识竞赛,评分标准是:答对一题加10分,答错一题扣10分,不回答得0分,每个队的基本分均分为0分,四个代表答题情况如下表:

    第1题

    第2题

    第3题

    第4题

    第5题

    总得分

    第一队

    得分

    第二队

    得分

    第三队

    得分

    第四队

    得分

    ㈡自我评价

    1、小结

    1、对于比0分低的得分,我们引进“—”号。例:比0低10分表示为

    “-10”。

    对于比0分高的得分,我们引进“+”号。例:比0高10分表示为“+10”。

    2、我们常常用负数:正数表示相反意义的量。

    2、概念:

    1、正数:像+5、1.2、…这样的数,举例如:_________________________(正数前“+”号可写可不写)。

    2、负数:在正数前面加上“—”号的数,举例如:_________________(负数前“—”号不可以省略)。

    3、0既不是正数也不是负数。

    3、练习:把下列各数中的正数和负数分别填在表示正数集合和负数集合里。

    +684+9.15—120—1—0.01

    正数集合负数集合

    4、数的大小:所有的正数都大于0,所有的负数都小于0。

    5、练习,比较大小:0—50+0.0010—100(填>、<=。

    6、正负数的意义,表示相反意义的量,例:如果零下5℃记作“+5℃”,那么零下5℃记作“—5℃”。

    练习:(1)某人转动方向盘,如果+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈表示为。

    (2)某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克,记作+0.02克,那么—0.03克表示______________。

    (3)在4个不同时刻,对同一水池中的水位进行测量,记录如下:

    上升3厘米下降6厘米下降1厘米不升不降

    7、数的分类:正数正整数如:1、2、3…

    (1)有理数如:、0.1、…

    0

    负数如:—1、—2、—3…

    如:—、—0.1、—…

    正整数如:1、2、3…

    整数

    (2)有理数如:—1、—2、—3…

    分数如:1、0.1、+

    如:—0.3、—、—4…

    练习:把下列各数填在相应的大括号里:

    2,—3.5,0,+32,—0.8,—3,—10,25%,+,0.0001

    ①正整数集合{…};

    ②负整数集合{…};

    ③正分数集合{…};

    ④负分数集合{…};

    ⑤有理数集合{…}。

    8、小结:①有理数分数类;

    ②负数的意义。

    一、判断:

    (1)0既是正数,也是负数。()

    (2)一个数不是正数就是负数。()

    (3)0是最小的正整数。()

    (4)一个数不是正数就是负数或零。()

    (5)0是整数但不是正数。()

    (6)正数和负数统称有理数。()

    二、填空:

    (1)高于海平面1250米的地方高度表示为海拔+1250米,低于海平面37米的地方高度表示为海拔米。

    (2)如果+20%表示增加20%,那么—6%表示。

    (3)某日傍晚,黄山的气温由中午的零上2℃下降了7℃,这天傍晚黄山的气温是_____℃,这天傍晚黄山的气温是_____℃。

    (4)_____统称整数,_____统称分数。整数和分数统称_____。

    (5)比较大小0___—5—___0100___25+0.101___0

    (6)将下列各数填在相应的集合内:

    —135.20—7+—0.12π35%880+20

    整数集合{…};分数集合{…};

    (2)小明和小华同时从A地出发,如果小明向东走36米记为+36米,则小华向西走记作_____米,这时两人相距_____米。

    (3)产量增加-150千克是什么意思?

    数学教案-


    课题函数(二)

    一、教学目的

    1.使学生理解自变量的取值范围和函数值的意义。

    2.使学生理解求自变量的取值范围的两个依据。

    3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。

    4.通过求函数中自变量的取值范围使学生进一步理解函数概念。

    二、教学重点、难点

    重点:函数自变量取值的求法。

    难点:函灵敏处变量取值的确定。

    三、教学过程

    复习提问

    1.函数的定义是什么?函数概念包含哪三个方面的内容?

    2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?

    (答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

    3.什么叫二次根式?使二次根式成立的条件是什么?

    (答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)

    4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。

    新课

    1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。

    2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:

    (1)自变量取值范围是使函数解析式(即是函数表达式)有意义。

    (2)自变量取值范围要使实际问题有意义。

    3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。

    推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。

    4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:

    (1)例3中的4个小题归纳起来仍是三类题型。

    (2)求函数值的问题实际是求代数式值的问题。

    补充例题

    求下列函数当x=3时的函数值:

    (1)y=6x-4;(2)y=--5x2;(3)y=3/7x-1;(4)。

    (答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

    小结

    1.解析法的意义:用数学式子表示函数的方法叫解析法。

    2.求函数自变量取值范围的两个方法(依据):

    (1)要使函数的解析式有意义。

    ①函数的解析式是整式时,自变量可取全体实数;

    ②函数的解析式是分式时,自变量的取值应使分母≠0;

    ③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。

    (2)对于反映实际问题的函数关系,应使实际问题有意义。

    3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。

    练习:P94中1,2,3。

    作业:P95~P96中A组3,4,5,6,7。B组1,2。

    四、教学注意问题

    1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。

    2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。

    3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。

    【数学教案-代数式】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...