你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >数学教案-数轴初中教案精选
  • 数学教案-数轴初中教案精选

    发表时间:2022-01-21

    【www.jk251.com - 初中数学教案】

    一名优秀的初中老师肯定有一份准备充分的教案,做好教案有利于教学活动的开展,一份优质的教学方案往往来自教师长时间的经验累积,怎样才能写好初中教案?下面是小编为大家整理的“数学教案-数轴初中教案精选”相关内容,仅供参考,欢迎大家阅读。

    教学目标

    1.了解数轴的概念和数轴的画法,掌握数轴的三要素;

    2.会用数轴上的点表示有理数,会利用数轴比较有理数的大小;

    3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

    教学建议

    一、重点、难点分析

    本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础.

    二、知识结构

    有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:

    定义

    三要素

    应用

    数形结合

    规定了原点、正方向、单位长度的直线叫数轴

    原点

    正方向

    单位长度

    帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数

    比较有理数大小,数轴上右边的数总比左边的数要大

    在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

    三、教法建议

    小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

    关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

    四、数轴的相关知识点

    1.数轴的概念

    (1)规定了原点、正方向和单位长度的直线叫做数轴.

    这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.

    (2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.

    以数轴是理解有理数概念与运算的重要工具.有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的重要思想.另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对数轴的学习.

    2.数轴的画法

    (1)画直线(一般画成水平的)、定原点,标出原点“O”.

    (2)取原点向右方向为正方向,并标出箭头.

    (3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

    (4)标注数字时,负数的次序不能写错,如下图。

    3.用数轴比较有理数的大小

    (1)在数轴上表示的两数,右边的数总比左边的数大。

    (2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

    (3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

    五、数轴定义的理解

    1.规定了原点、正方向和单位长度的直线叫做数轴,如图1所示.

    2.所有的有理数,都可以用数轴上的点表示.例如:在数轴上画出表示下列各数的点(如图2).

    A点表示-4;B点表示-1.5;

    O点表示0;C点表示3.5;

    D点表示6.

    从上面的例子不难看出,在数轴上表示的两个数,右边的数总比左边的数大,又从正数和负数在数轴上的位置,可以知道:

    正数都大于0,负数都小于0,正数大于一切负数.

    因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。

    同理,,表示是负数;反之是负数也可以表示为。

    3.正数轴常见几种错误

    1)没有方向2)没有原点3)单位长度不统一教学设计示例数轴(一)教学目标1.使学生正确理解数轴的意义,掌握数轴的三要素;2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点和难点重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数与数轴上点的对应关系.课堂教学过程设计一、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.二、讲授新课让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.三、运用举例变式练习例1画一个数轴,并在数轴上画出表示下列各数的点:例2指出数轴上A,B,C,D,E各点分别表示什么数.课堂练习示出来.2.说出下面数轴上A,B,C,D,O,M各点表示什么数?最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.四、小结指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.五、作业1.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面数轴上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};课堂教学设计说明从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.数轴(二)一、素质教育目标(一)知识教学点1.掌握数轴的三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.(二)能力训练点1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.2.对学生渗透数形结合的思想方法.(三)德育渗透点使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.(四)美育渗透点通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.二、学法引导1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.2.学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习.三、重点、难点、疑点及解决办法1.重点:正确掌握数轴画法和用数轴上的点表示有理数.2.难点:有理数和数轴上的点的对应关系。四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习七、教学步骤(一)创设情境,引入新课师:大家知识温度计的用途是什么?生:温度计可以测量温度(出示投影1)三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.师:三个温度计所表示的温度是多少?生:2℃,-5℃,0℃.我们能否用类似温度计的图形表示有理数呢?这种表示数的图形就是今天我们要学的内容—数轴(板书课题).【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—数轴.再从温度计这个实物形象抽象出数轴来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.(二)探索新知,讲授新课1.数轴的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:第一步:画直线定原点原点表示0(相当于温度计上的0℃).第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.让学生观察画好的直线,思考以下问题:(出示投影1)(1)原点表示什么数?(2)原点右方表示什么数?原点左方表示什么数?(3)表示+2的点在什么位置?表示-1的点在什么位置?(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.教师根据学生回答给予肯定或否定,纠正后板书.2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.3.尝试反馈,巩固练习请大家回答下列问题:(出示投影2)(1)有人说一条直线是一条数轴,对不对?为什么?(2)下列所画数轴对不对?如果不对,指出错在哪里?学生活动:学生思考,不准讨论,想好后举手回答.让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.【教法说明】此组练习的目的是巩固数轴的概念.答案:(2)①缺原点,②缺正方向,③数轴不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是数轴,同时⑦为学习平面直角坐标系打基础.4.有理数与数轴上点的关系通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.例1画一条数轴,并画出表示下列各数的点:1,5,0,-2.5,.学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.【教法说明】让学生动手自己画数轴,有助于培养学生实际操作能力.例1是把给定的有理数用数轴上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对数轴概念的理解.(出示投影4)例2指出数轴上A、B、C、D、E各点分别表示什么数?先让学生思考一会,然后学生举手回答解:A表示-3;B表示;C表示3;D表示;E表.【教法说明】例2是让学生说出数轴上的点表示的有理数,完成了由“形”到“数”的思维过程.例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想.5.尝试反馈,巩固练习(出示投影5)①说出下面数轴上A、B、C、D、O、M各点表示什么数?②将-3,,1.5,-6,,2.25,,-5,1各数用数轴上的点表示出来.【教法说明】①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容.(三)归纳小结师:①数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合数轴进行的.②掌握数轴三要素,正确地画出数轴,提醒同学们,所有的有理数都可用数轴上的各点来表示,但是反过来不成立,即数轴上的各点,并不是都表示有理数.以后再研究.八、随堂练习1.判断题(1)直线就是数轴()(2)数轴是直线()(3)任何一个有理数都可以用数轴上的点来表示()(4)数轴上到原点距离等于3的点所表示的数是+3()(5)数轴上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.()2.画一条数轮,并画出表示下列各数的点,-5,0,+3.2,-1.4九、布置作业(-)必做题:课本第56页1、2.(二)选做题:课本第56页及第57页B组l.(三)思考题:①在数轮上距原点3个单位长度的点表示的数是_____________②在数轮上表示-6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度.【教法说明】由于学生在知识、技能、能力方面发展不尽相同,所以分层次地布置作业,兼顾学习有困难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能.十、板书设计随堂练习答案1.×√√×√2.略作业答案(一)必做题1.(1)依次是(2)依次是2.依次是(二)选做题:3.略B组1.(1)-6,(2)-1,(3)3;(4)0(三)思考题:①②左,6,右,6探究活动(1)在数轴上表示出距离原点3个单位长度和4.5个单位长度的点,并用“<”号将这些点所表示的数排列起来;(2)写出比-4大但不大于2的所有整数.分析:画数轴时,数轴的三要素:原点、正方向、单位长度缺一不可.(1)在数轴上,距离原点3个单位长度和4.5个单位长度的点各有两个,它们分别在原点两旁且关于原点对称.画出这些点,这些点所表示的数的大小就排列出来了;(2)在数轴上画出大于-4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求.“不大于2”的意思是小于或等于2.解:(1)数轴上,距离原点3个单位的点是+3和-3,距离原点4.5个单位的点是+4.5和-4.5.由图看出:-4.5<-3<3<4.5(2)在数轴上画出大于-4但不大于2的数的范围.由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2.点评:利用数轴,数形结合,是解这一类问题的好方法.教学目标1.了解数轴的概念和数轴的画法,掌握数轴的三要素;2.会用数轴上的点表示有理数,会利用数轴比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。教学建议一、重点、难点分析本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础.二、知识结构有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫数轴原点正方向单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。三、教法建议小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。四、数轴的相关知识点1.数轴的概念(1)规定了原点、正方向和单位长度的直线叫做数轴.这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.以数轴是理解有理数概念与运算的重要工具.有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的重要思想.另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对数轴的学习.2.数轴的画法(1)画直线(一般画成水平的)、定原点,标出原点“O”.(2)取原点向右方向为正方向,并标出箭头.(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。(4)标注数字时,负数的次序不能写错,如下图。3.用数轴比较有理数的大小(1)在数轴上表示的两数,右边的数总比左边的数大。(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。五、数轴定义的理解1.规定了原点、正方向和单位长度的直线叫做数轴,如图1所示.2.所有的有理数,都可以用数轴上的点表示.例如:在数轴上画出表示下列各数的点(如图2).A点表示-4;B点表示-1.5;O点表示0;C点表示3.5;D点表示6.从上面的例子不难看出,在数轴上表示的两个数,右边的数总比左边的数大,又从正数和负数在数轴上的位置,可以知道:正数都大于0,负数都小于0,正数大于一切负数.因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。同理,,表示是负数;反之是负数也可以表示为。3.正数轴常见几种错误1)没有方向2)没有原点3)单位长度不统一教学设计示例数轴(一)教学目标1.使学生正确理解数轴的意义,掌握数轴的三要素;2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点和难点重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数与数轴上点的对应关系.课堂教学过程设计一、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.二、讲授新课让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.三、运用举例变式练习例1画一个数轴,并在数轴上画出表示下列各数的点:例2指出数轴上A,B,C,D,E各点分别表示什么数.课堂练习示出来.2.说出下面数轴上A,B,C,D,O,M各点表示什么数?最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.四、小结指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.五、作业1.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面数轴上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};课堂教学设计说明从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.数轴(二)一、素质教育目标(一)知识教学点1.掌握数轴的三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.(二)能力训练点1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.2.对学生渗透数形结合的思想方法.(三)德育渗透点使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.(四)美育渗透点通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.二、学法引导1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.2.学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习.三、重点、难点、疑点及解决办法1.重点:正确掌握数轴画法和用数轴上的点表示有理数.2.难点:有理数和数轴上的点的对应关系。四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习七、教学步骤(一)创设情境,引入新课师:大家知识温度计的用途是什么?生:温度计可以测量温度(出示投影1)三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.师:三个温度计所表示的温度是多少?生:2℃,-5℃,0℃.我们能否用类似温度计的图形表示有理数呢?这种表示数的图形就是今天我们要学的内容—数轴(板书课题).【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—数轴.再从温度计这个实物形象抽象出数轴来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.(二)探索新知,讲授新课1.数轴的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:第一步:画直线定原点原点表示0(相当于温度计上的0℃).第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.让学生观察画好的直线,思考以下问题:(出示投影1)(1)原点表示什么数?(2)原点右方表示什么数?原点左方表示什么数?(3)表示+2的点在什么位置?表示-1的点在什么位置?(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.教师根据学生回答给予肯定或否定,纠正后板书.2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.3.尝试反馈,巩固练习请大家回答下列问题:(出示投影2)(1)有人说一条直线是一条数轴,对不对?为什么?(2)下列所画数轴对不对?如果不对,指出错在哪里?学生活动:学生思考,不准讨论,想好后举手回答.让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.【教法说明】此组练习的目的是巩固数轴的概念.答案:(2)①缺原点,②缺正方向,③数轴不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是数轴,同时⑦为学习平面直角坐标系打基础.4.有理数与数轴上点的关系通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.例1画一条数轴,并画出表示下列各数的点:1,5,0,-2.5,.学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.【教法说明】让学生动手自己画数轴,有助于培养学生实际操作能力.例1是把给定的有理数用数轴上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对数轴概念的理解.(出示投影4)例2指出数轴上A、B、C、D、E各点分别表示什么数?先让学生思考一会,然后学生举手回答解:A表示-3;B表示;C表示3;D表示;E表.【教法说明】例2是让学生说出数轴上的点表示的有理数,完成了由“形”到“数”的思维过程.例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想.5.尝试反馈,巩固练习(出示投影5)①说出下面数轴上A、B、C、D、O、M各点表示什么数?②将-3,,1.5,-6,,2.25,,-5,1各数用数轴上的点表示出来.【教法说明】①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容.(三)归纳小结师:①数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合数轴进行的.②掌握数轴三要素,正确地画出数轴,提醒同学们,所有的有理数都可用数轴上的各点来表示,但是反过来不成立,即数轴上的各点,并不是都表示有理数.以后再研究.八、随堂练习1.判断题(1)直线就是数轴()(2)数轴是直线()(3)任何一个有理数都可以用数轴上的点来表示()(4)数轴上到原点距离等于3的点所表示的数是+3()(5)数轴上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.()2.画一条数轮,并画出表示下列各数的点,-5,0,+3.2,-1.4九、布置作业(-)必做题:课本第56页1、2.(二)选做题:课本第56页及第57页B组l.(三)思考题:①在数轮上距原点3个单位长度的点表示的数是_____________②在数轮上表示-6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度.【教法说明】由于学生在知识、技能、能力方面发展不尽相同,所以分层次地布置作业,兼顾学习有困难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能.十、板书设计随堂练习答案1.×√√×√2.略作业答案(一)必做题1.(1)依次是(2)依次是2.依次是(二)选做题:3.略B组1.(1)-6,(2)-1,(3)3;(4)0(三)思考题:①②左,6,右,6探究活动(1)在数轴上表示出距离原点3个单位长度和4.5个单位长度的点,并用“<”号将这些点所表示的数排列起来;(2)写出比-4大但不大于2的所有整数.分析:画数轴时,数轴的三要素:原点、正方向、单位长度缺一不可.(1)在数轴上,距离原点3个单位长度和4.5个单位长度的点各有两个,它们分别在原点两旁且关于原点对称.画出这些点,这些点所表示的数的大小就排列出来了;(2)在数轴上画出大于-4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求.“不大于2”的意思是小于或等于2.解:(1)数轴上,距离原点3个单位的点是+3和-3,距离原点4.5个单位的点是+4.5和-4.5.由图看出:-4.5<-3<3<4.5(2)在数轴上画出大于-4但不大于2的数的范围.由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2.点评:利用数轴,数形结合,是解这一类问题的好方法.

    jK251.com其他人还在看

    数学教案-梯形初中教案精选


    一、教学目标

    1.掌握等腰梯形的判定方法.

    2.能够运用等腰梯形的性质和判定进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力.

    3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想

    二、教法设计

    小组讨论,引导发现、练习巩固

    三、重点、难点

    1.教学重点:等腰梯形判定.

    2.教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线).

    四、课时安排

    1课时

    五、教具学具准备

    多媒体,小黑板,常用画图工具

    六、师生互动活动设计

    教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的判定,归纳小结梯形转化的常见的辅助线

    七、教学步骤

    【复习提问】

    1.什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?

    2.等腰梯形有哪些性质?它的性质定理是怎样证明的?

    3.在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?

    我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题.

    【引人新课】

    等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形.

    前面我们用等腰三角形的定理证明了等腰梯形的性质定理,现在我们也可以用等腰三角形的判定定理来证明等腰梯形的判定定理.

    例1已知:如图,在梯形中,,,求证:.

    分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等.”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,定理就容易证明了.

    (引导学生口述证明方法,然后利用投影仪出示三种证明方法)

    (1)如图,过点作、,交于,得,所以得.

    又由得,因此可得.

    (2)作高、,通过证推出.

    (3)分别延长、交于点,则与都是等腰三角形,所以可得.

    (证明过程略).

    例3求证:对角线相等的梯形是等腰梯形.

    已知:如图,在梯形中,,.

    求证:.

    分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.

    在和中,已有两边对应相等,别人要能证,就可通过证得到.

    (引导学生说出证明思路,教师板书证明过程)

    证明:过点作,交延长线于,得,

    ∴.

    ∵,∴

    ∵,∴

    又∵、,∴

    ∴.

    说明:如果、交于点,那么由可得,,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路.

    例4画一等腰梯形,使它上、下底长分别5cm,高为4cm,并计算这个等腰梯形的周长和面积.

    分析:如图,先算出长,可画等腰三角形,然后完成的画图.

    画法:①画,使.

    .

    ②延长到使.

    ③分别过、作,,、交于点.

    四边形就是所求的等腰梯形.

    解:梯形周长.

    答:梯形周长为26cm,面积为.

    【总结、扩展】

    小结:(由学生总结)

    (l)等腰梯形的判定方法:①先判定它是梯形②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.

    (2)梯形的画图:一般先画出有关的三角形,在此基础上再画出有关的平行四边形,最后得到所求图形.(三角形奠基法)

    八、布置作业

    l.已知:如图,梯形中,,、分别为、中点,且,求证:梯形为等腰梯形.

    九、板书设计

    十、随堂练习

    教材P177中l;P179中B组2

    数学教案-矩形初中教案精选


    一、教学目标

    1.掌握矩形的定义,知道矩形与平行四边形的关系.

    2.掌握矩形的性质定理.

    3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.

    4.通过性质的学习,体会矩形的应用美.

    二、教法设计

    观察、启发、总结、提高,类比探讨,讨论分析,启发式.

    三、重点、难点及解决办法

    1.教学重点:矩形的性质及其推论.

    2.教学难点:矩形的本质属性及性质定理的综合应用.

    四、课时安排

    1课时

    五、教具学具准备

    教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

    六、师生互动活动设计

    教具演示、创设情境,观察猜想,推理论证

    七、教学步骤

    【复习提问】

    什么叫平行四边形?它和四边形有什么区别?

    【引入新课】

    我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形——矩形(写出课题).

    【讲解新课】

    制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).

    矩形的性质:

    既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.

    继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明.引导学生利用平行四边形角的性质证明得出.

    矩形性质定理1:矩形的四个角都是直角.

    矩形性质定理2:矩形对角线相等.

    由矩形性质定理2我们可以得到

    推论:直角三角形斜边上的中线等于斜边的一半.

    (这实际上是△的一个重要性质,即△斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)

    例1已知如图1矩形的两条对角线相交于点,,,求矩形对角线的长.(按教材的格式)

    (强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)

    【总结、扩展】

    1.小结:(用投影打出)

    (1)矩形、平行四边形、四边形从属关系如图.

    (2)矩形性质.

    1.具有平行四边形的所有性质.

    2.特有性质:四个角都是直角,对角线相等.

    3.思考题:已知如图,是矩形对角线交点,平分,,求的度数

    数学教案-比例线初中教案精选


    教学建议

    知识结构

    重难点分析

    本节的重点是线段的比和比例线段的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系――相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.

    本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的.

    教法建议

    1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加学生学习的主动性

    2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想

    3.这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较

    4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感

    5.比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理

    教学设计示例1

    (第1课时)

    一、教学目标

    1.理解线段的比的概念.

    2.通过与小学知识到比较,初步培养学生“类比”的数学思想.

    3.通过线段的比的有关计算,培养学习的计算能力.

    4.通过“引言”及“例1”的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育.

    二、教学设计

    先学后做,启发引导

    三、重点及难点

    1.教学重点两条线段比的概念.

    2.教学难点正确理解两条线段的比及应用.

    四、课时安排

    1课时

    五、教具学具准备

    股影仪、胶片、常用画图工具

    六、教学步骤

    【复习提问】

    找学生回答小学学过的比、比的前项和后项的概念.

    (两个数相除又叫做两数的比,记作或a:b,其中a叫比的前项,b叫比的后项)

    【讲解新课】

    把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:

    等.

    可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.

    一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是,或写成,和数的比一样,a叫比的前项,b叫比的后项.

    关于两条线段比的概念,教学中要揭示它的实质,即表示a是b的k倍,这是学生已有的知识,较易理解,也容易使学生注意到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注意尺度.

    就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注意的问题,归纳出:

    (l)两条线段的比就是它们的长度的比.

    (2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.

    (3)两条线段的比值总是正数.(并不都是正数)

    (4)除了a=b之外,.与互为倒数.

    例1见教材P202.

    讲解完例1后:

    (l)提问学生AB是的多少倍,是AB的多少倍,以加深学生对线段比的逾义的理解.

    (2)给出:比例尺=,就例1的图上,若图距是8cm的两地,实际距离是多少?

    另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习兴趣.

    例2见教材P202.

    讲解完例2后:

    (l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生认识这种三角形中边的比与长度无关.

    (2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为.

    常识2:等腰直角三角形三边(从小到大)的比为1:1:.

    学生掌握了这些常识可有两点好处:

    ①知道例2中“”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.

    【小结】

    1.两条线段比的概念以及应注意的问题.

    2.会求两条线段的比.

    七、布置作业

    教材P210中2、3.

    八、板书设计

    数学教案-定理与证明初中教案精选


    一、教学目标

    1.了解“证明”的必要性和推理过程中要步步有据.

    2.了解综合法证明的格式和步骤.

    3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.

    4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.

    5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.

    二、学法引导

    1.教师教法:尝试指导,引导发现与讨论相结合.

    2.学生学法:在教师的指导下,积极思维,主动发现.

    三、重点难点及解决办法

    (-)重点

    证明的步骤和格式是本节重点.

    (二)难点

    理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.

    (三)解决办法

    通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.

    四、课时安排

    l课时

    五、教具学具准备

    投影仪、三角板、自制胶片.

    六、师生互动活动设计

    1.通过引例创设情境,点题,引入新课.

    2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.

    3.通过提问的形式完成小结.

    七、教学步骤

    (-)明确目标

    使学生严密推理过程,掌握推理格式,提高推理能力。

    (二)整体感知

    以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.

    (三)教学过程

    创设情境,引出课题

    师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).

    例1已知:如图1,,是截线,求证:.

    证明:∵(已知),∴(两直线平行,同位角相等).

    ∵(对项角相等),∴(等量代换).

    这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.

    [板书]2.9定理与证明

    探究新知

    1.命题证明步骤

    学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.

    【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。在总结步骤时,学生所说的层次不一定有逻辑性,或不太严密,教师要注意引导,使学生分清命题证明几个步骤的先后层次.

    根据学生讨论,回答结果.教师归纳小结,师生共同得出证明命题的步骤(出示投影):

    第一步,画出命题的图形.

    先根据命题的题设即已知条件,画出图形,再把命题的结论即求证的内容在图上标出.还要根据证明的需要,在图上标出必要的字母或符号,以便于叙述或推理过程的表达.

    第二步,结合图形写出已知、求证.

    把命题的题设化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.

    第三步,经过分析,找出由已知推得求证的途径,写出推理的过程.

    学生活动:结合“两直线平行,内错角相等”这一命题的证明,理解以上命题证明的一般步骤(给学生一定时间理解记忆).

    【教法说明】在以上第二个步骤中,将文字语言转化为符号语言是教学中的难点,要注意在练习中加强辅导,第三步由学生独立完成有困难,要逐步培养训练,现阶段暂不要求学生独立完成.

    反馈练习:(1)画出证明命题“两直线平行,同旁内角互补”时的图形,写出已知、求证.

    (2)课本第112页A组第5题.

    【教法说明】由学生依照例1“两直线平行,内错角相等”这一命题的证明画出图形,写出已知、求证,巩固命题证明的第一、二步.

    2.命题的证明

    例2证明:邻补角的平分线互相垂直.

    【教法说明】此例题完全放手让学生独立完成有一定困难,但教师也不能包办代替,最好通过让学生分步讨论,同桌互相磋商,分步完成的方法,使学生对命题证明的每一步都进一步理解,教师可以给学生指明思考步骤.

    (1)分析命题的题设与结论,画出命题证明所需要的图形.

    邻补角用图2表示:

    图2

    添画邻补角的平分线,见图3:

    图3

    (2)根据命题的题设与结论写出已知、求证.邻补角用几何符号语言提示:,角平分线用几何符号语言表示:,,求证邻补角平分钱互相垂直,用符号语言表示:.

    (3)分析由已知谁出求证途径,写出证明过程.

    有什么结论后可得(),由已知可以推导吗?学生讨论思考.

    【教法说明】以上步骤的完成教师只提供思路,具体结论的得出与操作要由学生独立完成.找一个学生到黑板上板演,其他同学在练习本上写出完成整过程.

    已知:如图,,,.

    求证:

    证明:∵(已知),又∵,(已知),∴.

    ∴(垂直定义).

    证明完成后提醒学生注意以下几点:

    ①要证明的是一个简单叙述的命题,题设和结论不明显,可以先根据题意画出图形.如例2,结合图形分析命题的题设和结论.

    ②在写已知、求证的内容时,要将文字语言转化为符号语言来表示,转化时的写法也不是惟一的,要根据使用的方便来写,如:与互为邻补角,在已知中写为,角平分线有几种表示方法,如是的平分线,,,根据此题写成较好,方便于下面的推理计算.

    ③对命题的分析、画图,如何推理的思考过程,证明时不必写出来,不属于证明内容.

    反馈练习:按证明命题的步骤证明:“两条直线被第三条直线所截,如果同位角相等,那么内错角相等.”

    【教法说明】由学生独立完成,找学生板演,发现问题教师及时纠正.

    3.判定一个命题是假命题的方法

    师:以上我们的推理是说明一个命题是真命题的判定方法.那么如何判定一个命题是假命题呢?如“相等的角是对项角”,同学们都知道这是一个假命题,如何说明它是一个假命题呢?谁能试着说明一下?

    【教法说明】教师先不告诉学生判定一个命题是假命题的方法,而是由很明显的“相等角是对顶角”这一假命题,让学生自己尝试着去说明,体验从反面去说明一个问题的方法,然后教师归纳小结.

    根据学生说明,教师小结:

    判定一个命题是假命题,只要举出一个反例即可,也就是说你所举命题符合命题的题设,但不满足结论.如“同位角相等”可如图,与是同位角但不相等就说明“同位角相等是假命题”.

    反馈练习:课本第111页习题2.3A组第4题.

    【教法说明】在做以上练习时一定让学生学会从反面思考问题的方法,再就是要澄清一些错误的概念.

    反馈练习

    投影出示以下练习:

    1.指出下列命题的题设和结论

    (1)两条平行线被第三条直线所截,同旁内角互补.

    (2)两个角的和等于直角,这两个角互为余角.

    (3)对项角相等.

    (4)同角或等角的余角相等.

    2.画图,写出已知,求证(不证明)

    (1)同垂直于一条直线的两条直线平行.

    (2)两条平行直线被第三条直线所截,同位角的平分线互相平行.

    3.抄写下题并填空

    已知:如图,.

    求证:.

    证明:∵(),

    ∴().

    ∴().

    【教法说明】以上练习让学生独立完成,第1题主要是训练学生分清命题的题设和结论;第2题是训练学生把命题转化为几何语言、几何图形的能力;第3题是让学生进一步体会命题证明的三个步骤.

    总结、扩展

    以提问的形式归纳出本节课的知识结构:

    八、布置作业

    (-)必做题

    课本第110页习题2.3A组第3(2)、(3)、(4)题.

    (二)思考题

    课本第112页B组第l、2题.

    作业答案

    A组(略)

    B组1.已知两直线平行,同旁内角互补。

    (两直线平行,同旁内角互补)(同角的补角相等).

    2.已知:如图,,、分别平分与.求证:.

    数学教案-等式它的性质初中教案精选


    教学设计示例

    一、素质教育目标

    (一)知识起学点

    1.理解:等式的意义,并能举出有关等式的例子.

    2.掌握:关于等式变形的两条性质,并能语言叙述.

    3.应用:会用等式的两条性质将等式变形,并能对变形说明理由.

    (二)能力训练点

    通过等式的两条性质的教学,培养学生由等式走向新等式的解题思想,即为以后方程的同解变形打下基础.

    (三)德育渗透点

    从特殊到一般的思维方法.

    (四)美育渗透点

    等式的两条性质体现了数学的对称美.

    二、学法引导

    1.教学方法:采取引导发现法,创设合理的问题情境,激发学生思维的积极性,充分展现学生的主体作用.

    2.学生学法:演示实验→等式性质→巩固练习.

    三、重点、难点、疑点及解决办法

    1.重点:等式概念的认识理解,等式性质的归纳.

    2.难点:利用等式的两条性质变形等式.

    3.疑点:(1)等式性质2中,关于除数不为零的理解.

    (2)利用性质变形时,对“等式两边”的理解.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪或电脑、自制胶片、简单实物.

    六、师生互动活动设计

    师生共同做演示实验,得出等式性质,教师出示巩固性练习,学生以多种形式完成.

    七、教学步骤

    (-)创设情境,复习导入

    教师在上课开始时,给出如下的数学关系

    (出示投影1)

    ;;

    ;;

    师提出问题:观察上面式子表示了什么关系?由学生回答“相等关系”后引出等式的概念和等式的含义,分清等式的左边和右边.

    教师和学生一起完成一个演示实验:

    两只手中各拿4支粉笔,现在我们再分别从粉笔盒里拿出两支,放入相应手中,问两只手中粉笔个数的关系?如果我们将开始手中的粉笔各放回两支怎样呢?既扩大到原来的2倍,或缩小到原来的2倍,结果还是相等.

    (二)探索新知,讲授新课

    教师引导学生,把上面实验抽象为一个数学问题.

    即:4=4.

    提出问题:由上面两组等式变形,我们可以得出关于等式变形什么结论?把上面式中2,改3或-5行吗?

    学生活动:让全体学生参与讨论,启发学生怎样用精炼的语言叙述,或分组推荐代表回答.

    师总结等式的性质:

    由前两式总结:1.等式的两边都加上(或减去)同一个数或同一个等整式,所得结果仍是等式.

    由后两式总结:2.等式的两边都乘以(或除以)同一个数(除数不能为零),所得结果仍是等式.

    提出问题:①4=4两边都加上整式如:两边都加上结果还是等式吗?

    ②第二结论中所说除数可以是零吗?

    学生活动:学生回答问题后,教师对上面结论加以补充说明.

    教师归纳:以上两个规律,就是我们今天学习的“等式性质”

    【教法说明】通过以上两条性质的总结,教师应强调以下四点:

    ①等式的性质1是加法和减法运算,等式的性质2是乘法或除法运算.

    ②等式的两边都参与运算,并且是同一种运算.

    ③加(或减)、乘以(或除以)的是同一个数.

    ④零不能做除数或分母.

    (三)尝试反馈,巩固练习

    【教法说明】由于这组题是例题的巩固,因此可以由学生讨论分组,以竞赛形式回答以增加课堂上的参与意识.

    (出示投影2)

    1.判断:已知等式,下列等式是否成立?

    ①;②;③;④.

    2.若,请同学们根据等式性质编出三个等式并说出你的编写根据.

    【教法说明】这组题是对等式性质的辨析,教学时应多让学生思考,并能说出依据.

    (出示投影3)

    1.从能不能得到呢?为什么?

    2.从能不能得到呢?为什么?

    3.从能不能得到呢?为什么?

    4.从能不能得到呢?为什么?

    学生活动:分组抢答.

    【教法说明】从以上题目可知,根据等式的性质,从已知等式出发通过变形可得出新的等式.

    (出示投影4)

    例用适当的数或整式填空,使所得结果仍是等式

    1.如果,那么;

    2.如果,那么;

    3.如果,那么.

    【教法说明】分析:

    1题从已知的一边入手,怎样变形就得到呢?(原等式两边都减去5)根据___________________________________________?

    2题观察等式的右边怎样由变形成5(两边加上),即原来两边都加上,根据等式性质1.

    3题观察等式左边怎样由变形为,即等式两边都除以0.2,根据等式性质2.

    巩固练习:(出示投影5)

    练习:用适当数填空,并且说出根据等式的哪条性质及怎样变形的?

    1.如果,那么;

    2.如果,那么;

    3.如果,那么;

    4.如果,那么;

    5.如果,那么.

    学生活动:分组讨论回答.

    【教法说明】这一段是学生尝试利用等式性质对等式变形的练习过程,因此可采用小组竞赛、抢答等灵活的课堂训练形式.

    师提出问题:上面问题同学们解答的非常好,下面请大家考虑一个问题,每个同学编一道和上面填空题类似的题目,交给同桌同学解答,并请对方谈谈所编题目是否符合标准.

    【教法说明】上面问题教师应指导学生编题、解答,最后应用由学生代表性地评比一下,以培养学生灵活性、多角度思考数学问题的方法.

    (四)变式训练,培养能力

    我们通过学习等式的性质,不难发现可以利用等式的性质解决方程的求解问题(也就是可以求方程未知数的值).

    (出示投影6)

    利用等式的性质解方程:

    (1);(2);

    解:等式两边都乘以2解:等式两边都加上7得

    等式的两边都除以5

    得.

    【教法说明】上面题目可启发学生思考如何应用等式性质求方程中未知数的值,由学生思考后教师引导作答写出以上过程

    (出示投影7)

    已知:、都是数,利用等式性质将下列各小题中的等式进行变形,然后填空.

    (1)如果,那么

    这就是说,如果两个数的和为零,那么这两个数___________.

    (2)如果,那么.

    这就是说,如果两个数的积为1,那么这两个数__________.

    【教法说明】这是利用等式变形来认识相反数、倒数问题,解题时注意“互为”问题的有关概念语言.

    (五)归纳小结

    师:我们今天学习了等式的概念和等式的性质,通过学习我们应该清楚:

    1.能根据等式的性质,把已知等式通过变形得到一个新等式,问题的关键在于怎样从新等式出发考虑用什么性质变形,这要靠大家的观察分析能力.

    2.我们今天学习的等式的性质,是将来解方程的依据.

    八、随堂练习

    1.填空题

    (1)将等式的两边都__________得到,这是根据等式性质______.

    (2)将等式的两边都乘以____________、或除以___________得到,这是根据等式性质____________;

    (3)将等式的两边都____________得到,这是根据等式性质_____________;

    (4)将等式的两边都__________得到,这是根据等式性质________.

    2.用适当的整式填空,使所得结果仍是等式

    (1)如果,那么;

    (2)如果,那么;

    (3)如果,那么;

    (4)如果,那么;

    (5)如果,那么.

    3.判断下列变形是否正确

    (1)由得到.()

    (2)由得到.()

    (3)由得到.()

    (4)由得到.()

    (5)由得到.()

    (6)由得到.()

    九、布置作业

    1.课本第186页习题4.1A组,4.(6)(7)(8);

    2.课本第187页B组3.

    十、板书设计

    十一、参考答案

    1.(1)加3,1;(2)2,,2;(3)减去,1;(4)除以,2.

    2.(1)2;(2)-3;(3);(4);(5),3.

    3.√√×××√

    作业答案

    4.(6);(7);(8);

    B组3.①,零;②,是1.

    【数学教案-数轴初中教案精选】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...