你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >相交线对顶角
  • 相交线对顶角

    发表时间:2022-01-19

    【www.jk251.com - 电场线】

    大家对教案都很熟悉了吧,撰写教案有利于教研活动的开展,在教案中总结好经验与教训,我们才能逐步成熟起来。如何才能写好初中教案呢?为了帮助大家,下面是由小编为大家整理的相交线对顶角,仅供参考,欢迎大家阅读。

    教学建议

    1.知识结构

    2.重点和难点分析

    (1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握.对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认.教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们.辨认对顶角的要领是:首先要有两条直线相交构成四个角的前提条件,再找其中有公共顶点没有公共边(或不相邻)的两个角,就是对顶角.

    (2)本节课的难点是对顶角性质的证明和书写格式.要证明两角相等,这对于刚学习推理证明的学生来说并非易事.教学时要引导学生回忆至今为止已经学过的关于两个角相等的定理,使学生自己联想到“同角的补角相等”这个定理,从而受到启发获得证明的思路.可先结合图形用文字语言叙述推理过程,然后再“翻译”成符号语言的几何推理格式.要特别注意使学生明确每一步推理的根据.

    3.教法建议

    (1)因为本节是由相交线的模型——用钉子固定的两根木条来引入的.所以教师要事先准备好教具,先让学生观察模型,对相交线建立感性认识,然后在从模型抽象出两条相交直线.或用我们提供的课件来引入本节课,激发学生的学习兴趣.

    (2)教师讲完了对顶角的定义后,可以用以下方法让学生感受对顶角的特征,探索其性质.老师拿出提前准备好的剪刀,在讲台上演示.老师不停地变换剪刀的边所成的角,让学生思考,在剪刀的边所在的角中,哪些角是对顶角,哪些角是邻补角?让学生在变化中理解对顶角和邻补角的意义.

    (3)本节课的内容适合启发式教学,教师可以先拿出相交线的模型,转动木条,观察角的变化,然后抽象出两条相交直线,再让学生观察四个角的特征,这四个角根据位置关系可以分几类,这两类角各有有什么特征?这些问题都要由老师设问、启发,学生经过观察、分析、归纳总结出来,让学生自己亲历一次发现的过程,有利于学生对对顶角、邻补角的概念和性质的理解.

    教学设计示例

    一、素质教育目标

    (一)知识教学点

    1.理解对顶角和邻补角的概念,能在图形中辨认.

    2.掌握对顶角相等的性质和它的推证过程.

    3.会用对顶角的性质进行有关的推理和计算.

    (二)能力训练点

    1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.

    2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力.

    (三)德育渗透点

    从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想.

    (四)美育渗透点

    通过实例,培养和提高学生的审美能力和审美标准;通过相交线,使学生进一步体会几何图形的简单美、对称美.

    二、学法引导

    1.教师教法:教具直观演示法启发引导、尝试研讨.

    2.学生学法:动手动脑、积极参与、认真研讨、学会概括.

    三、重点、难点及解决办法

    (一)重点

    (二)难点

    在较复杂的图形中准确辨认对顶角和邻补角.

    (三)疑点

    对顶角、邻补角的图形识别.

    (四)解决办法

    强调图形的基本特征,指导学生逐步学会分解复杂图形、找出基本图形的方法.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪或电脑、三角尺、自制复合胶片、木条制成的相交直线的模型.

    六、师生互动活动设计

    1.通过实例创设情境,引导学生进入课题.

    2.通过演示实验和学生讨论、总结对顶角、邻补角两个概念.

    3.通过学生研讨、练习巩固完成性质的讲解.

    4.通过学生总结完成课堂小结.

    5.通过随堂练习,检测学生学习情况.

    七、教学步骤

    (一)明确目标

    能在图形中正确辨认对顶角和邻补角,理解其概念,掌握其性质,并运用其进行推理计算.

    (二)整体感知

    通过对较复杂图形的认识和学习,逐步加深几何知识,培养学生逻辑思维能力和逻辑推理、表达能力.

    (三)教学过程

    创设情境,引入课题

    投影打出本章的章前图(投影片1),然后引导学生观察,并回答问题.

    学生活动:口答哪些道路是交错的,哪些道路是平行的.

    教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题:

    【板书】第二章相交线、平行线

    【教法说明】以立交桥为实例引出本章内容,目的是①通过实例,让学生了解相交线、平行线是我们日常生活中经常见到的;②通过画面,培养学生的空间想像能力;③通过画面,启发学生广泛地联想,让学生知道,相交线、平行线的概念是从实物中抽象出来的;④通过学生熟悉的事物,激发学生的学习兴趣.

    学生活动:请学生举出现实空间里相交线、平行线的一些实例.

    教师导入:相交线、平行线在日常生活中经常见到,有着广泛应用,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,从而引入本节课题.

    【板制】2.1

    探究新知,讲授新课

    教师演示:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开.固定水条a,绕钉子转动b,可以看到,b的位置变化了,a、b所成的角a也随着变化.这说明两条直线相交的不同位置情况,与它们的交角大小有关.可以用它们所成的角来说明相对位置的各种情况.所以研究两条直线相交问题首先来研究两条直线相交得到的有公共顶点的四个角.这四个角都有一个公共顶点,其中有些有公共边,有些没有公共边,故我们把这些角分成两类:对顶角和邻补角.

    【教法说明】演示相交线的模型,目的是使学生领会研究相交线为什么要研究它们相交所成的角.

    1.对顶角和邻补角的概念

    学生活动:观察右图,同桌讨论if与Z3有什么特点,然后,举手回答,教师统一学生观点并板书.

    【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.

    学生活动:让学生找一找右图中还有没有对顶角,如果有,是哪两个角?

    学生口答:∠2和∠4再也是对顶角.

    紧扣对顶角定义强调以下两点:

    (1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.

    (2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.

    反馈练习:投影显示(投影片2)

    下列各图中,∠l和∠2是对顶角吗?为什么?(射线OA是活动的)

    【教法说明】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象,最后一个图形为下面讲部补角做铺垫。

    学生活动:观察图2-l,∠1和∠2与对顶角相比,有什么相同点和不同点,从而得出邻补角的定义.

    【板书】∠l和∠2也是直线AB、CD相交得到的,它们不仅有一个公共顶点O,还有一条公共边OA,像这样的两个角叫做邻补角.

    学生活动:让学生找一找图2-1中还有没有其他邻补角,如果有,是哪些角.

    学生口答:∠1和∠4,∠2和∠3,∠3和∠4都是邻补角.

    【教法说明】把邻补角的概念与对顶角概念对比着讲解,便于掌握概念之间的联系与区别,加深对概念的理解.

    提出问题:如右图,∠1和∠2还是邻补角吗?为什么?

    师:邻补角也可以看成是一条直线与端点在这条直线上的一条射线组成的两个角,由此可知,邻补角是有特殊位置关系的两个互补的角.右图这样的邻补角在图形中也是常见的.在这种情况下,只存在一对邻补角,而不存在对顶角,与两条直线相交所得的角不同.

    教师演示:图中射线OC固定在一个位置不动,把∠1和∠2拉开,并且保持角的大小不变,如右图(投影片3).

    提出问题:∠l和∠2的和是多少度?∠l和∠2还是邻补角吗?为什么?

    学生活动:观察图形的变换,回答教师提出的问题,同桌可相互讨论.

    【教法说明】此问题意在区别互为补角和互为邻补角的概念,演示活动投影片,有助于学生抓住概念的本质,比教师单纯地强调效果更好.

    2.对顶角的性质

    提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?

    学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.

    【教法说明】学生说出对顶角∠l=∠3后,启发学生再说出∠2=∠4,然后得出对顶角相等的性质.在学生理解推理思路的基础上,板书为几何符号推理的格式.对顶角的性质不难得出,放手让学生展开讨论,充分发挥学生的主动性,在活跃课堂气氛的同时,培养学生的创造思维能力

    【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),

    ∴∠l=∠3(同角的补角相等).

    注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.

    或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),

    ∴∠1=∠3(等量代换).

    【教法说明】推得“对顶角相等”这个结论的过程,是课本中初次出现的一步推理,使学生了解推理可以写成“∵……∴……”的形式,并且每一步都要有根据,也就是括号里填的理由.这种推理的格式以后还要逐步渗透和训练,现在不要求自己会写推理过程,只要求学生能看明白就可以了,为以后证明打好基础。

    尝试反馈,巩固练习

    投影显示(投影片4)

    【教法说明】本级统习是巩固对顶角和邻补角概念的,同时培养学生的识图能力.第1题是课本第59页练习第2题的变式,第2题是课本第59页练习第3题和“想一想”的综合.解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:

    为此,对顶角有2×3=6个,邻补角的对数为4×3=12个.第3、4题是有关的概念的综合训练,其中第4题意在区别互为补角和互为邻补角的概念.

    投影显示(投影片5)

    【教法说明】第1题是直接利用对顶角相等的性质得出,第2、3题是结合图形利用对顶角相等的性质,第4题是课本59负练习第4题,是两条直线相交的一种特殊情况,为下节课讲两直线互相垂直埋下伏笔.

    变式训练,培养能力

    投影显示(投影片6)

    学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

    解:∠3=∠1=40°(对顶角相等).

    ∠2=180°-40°=140°(邻补角定义).

    ∠4=∠2=140°(对顶角相等).

    【教法说明】例题一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象更深刻.

    学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.

    变式1:把∠l=40°变为∠2-∠1=40°

    变式2:把∠1=40°变为∠2是∠l的3倍

    变式3:把∠1=40°变为∠1:∠2=2:9

    变式4:把∠1=40°变为∠1=平角

    【教法说明】学生自编开放性的题目,一是活跃课堂气氛;二是培养学生的开放思维能力和逆向思维能力.变式1、2、3均可建立方程或方程组求解,几何中计算角度和线段长度等问题常借助代数方程来解决.

    (四)总结、扩展

    角的名称

    特征

    性质

    相同点

    不同点

    对顶角

    ①两条直线相交面成的角

    ②有一个公共顶点

    ③没有公共边

    对顶角相等

    都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。

    对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个。

    邻补角

    ①两条直线相交面成的角

    ②有一个公共顶点

    ③有一条公共边

    邻补角互补

    学生活动:表格中的结论均由学生自己口答填出.

    【教法说明】课堂小结以提问形式,由学生自己讨论,系统归纳总结,以便培养学生的概括表达能力.

    八、布置作业

    (一)必做题

    课本第69页习题2.1A组第2题.

    (二)思考题

    课本第70页习题2.1A组第4题

    【教法说明】作业紧紧围绕着对顶角、邻补角的概念及对顶角性质.思考题是对顶角性质的一个应用实例,结合图形可以看出,活动指针的读数,就是两直线相交成一个角的度数,培养学生应用数学的意识.

    (三)作业答案

    2.解:(1)∠AOD的对顶角是∠BOC,∠EOC的对顶角是∠DOF.

    (2)∠AOC的邻补角是∠AOD和∠BOC,∠EOB的邻补角是∠AOE和∠BOF.

    (3)∠BOD=∠AOC=50°(对顶角相等),∠BOC=180°-50=130°(邻补角定义).

    4.应用对顶角相等的性质测量角.

    九、板书设计

    热门文章青少年思想道德建设

    当前我国作文教学改革的新趋势

    古诗三首(墨梅竹石石灰吟)

    第一场雪

    Unit2Lookatme第五课时

    植物妈妈有办法

    威尼斯的小艇

    等比数列的前n项和

    相关文章·角的画法

    ·角的度量

    ·角的比较

    ·角

    ·线段的比较与画法

    ·下学期射线、线段

    ·直线

    ·一元一次方程的应用

    中“课件”

    jk251.cOm扩展阅读

    5.1相交线相关教学方案


    [教学目标]

    通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

    在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

    [教学重点与难点]

    重点:邻补角与对顶角的概念.对顶角性质与应用

    难点:理解对顶角相等的性质的探索

    [教学设计]

    一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角

    在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

    观察剪刀剪布的过程,引入两条相交直线所成的角。

    学生观察、思考、回答问题

    教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

    教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,

    二.认识邻补角和对顶角,探索对顶角性质

    1.学生画直线ab、cd相交于点o,并说出图中4个角,两两相配

    共能组成几对角?根据不同的位置怎么将它们分类?

    学生思考并在小组内交流,全班交流。

    当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用

    几何语言准确表达

    有公共的顶点o,而且的两边分别是两边的反向延长线

    2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

    (学生得出结论:相邻关系的两个角互补,对顶的两个角相等)

    3学生根据观察和度量完成下表:

    两条直线相交所形成的角分类位置关系数量关系

    教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?

    4.概括形成邻补角、对顶角概念和对顶角的性质

    三.初步应用

    练习:

    下列说法对不对

    邻补角可以看成是平角被过它顶点的一条射线分成的两个角

    邻补角是互补的两个角,互补的两个角是邻补角

    对顶角相等,相等的两个角是对顶角

    学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

    四.巩固运用例题:如图,直线a,b相交,,求的度数。

    [巩固练习](教科书5页练习)已知,如图,,求:的度数

    [小结]

    邻补角、对顶角.

    [作业]课本p9-1,2p10-7,8

    [备选题]

    一判断题:

    如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角()

    两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补()

    二填空题

    1如图,直线ab、cd、ef相交于点o,的对顶角是,的邻补角是

    若:=2:3,,则=

    2如图,直线ab、cd相交于点o

    比例线


    教学建议

    知识结构

    重难点分析

    本节的重点是线段的比和的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系――相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.

    本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的.

    教法建议

    1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加学生学习的主动性

    2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想

    3.这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较

    4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感

    5.比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理

    教学设计示例1

    (第1课时)

    一、教学目标

    1.理解线段的比的概念.

    2.通过与小学知识到比较,初步培养学生“类比”的数学思想.

    3.通过线段的比的有关计算,培养学习的计算能力.

    4.通过“引言”及“例1”的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育.

    二、教学设计

    先学后做,启发引导

    三、重点及难点

    1.教学重点两条线段比的概念.

    2.教学难点正确理解两条线段的比及应用.

    四、课时安排

    1课时

    五、教具学具准备

    股影仪、胶片、常用画图工具

    六、教学步骤

    【复习提问】

    找学生回答小学学过的比、比的前项和后项的概念.

    (两个数相除又叫做两数的比,记作或a:b,其中a叫比的前项,b叫比的后项)

    【讲解新课】

    把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:

    等.

    可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.

    一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是,或写成,和数的比一样,a叫比的前项,b叫比的后项.

    关于两条线段比的概念,教学中要揭示它的实质,即表示a是b的k倍,这是学生已有的知识,较易理解,也容易使学生注意到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注意尺度.

    就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注意的问题,归纳出:

    (l)两条线段的比就是它们的长度的比.

    (2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.

    (3)两条线段的比值总是正数.(并不都是正数)

    (4)除了a=b之外,.与互为倒数.

    例1见教材P202.

    讲解完例1后:

    (l)提问学生AB是的多少倍,是AB的多少倍,以加深学生对线段比的逾义的理解.

    (2)给出:比例尺=,就例1的图上,若图距是8cm的两地,实际距离是多少?

    另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习兴趣.

    例2见教材P202.

    讲解完例2后:

    (l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生认识这种三角形中边的比与长度无关.

    (2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为.

    常识2:等腰直角三角形三边(从小到大)的比为1:1:.

    学生掌握了这些常识可有两点好处:

    ①知道例2中“”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.

    【小结】

    1.两条线段比的概念以及应注意的问题.

    2.会求两条线段的比.

    七、布置作业

    教材P210中2、3.

    八、板书设计

    比例线教案模板


    教学建议

    知识结构

    重难点分析

    本节的重点是线段的比和的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系――相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.

    本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的.

    教法建议

    1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加学生学习的主动性

    2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想

    3.这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较

    4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感

    5.比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理

    教学设计示例1

    (第1课时)

    一、教学目标

    1.理解线段的比的概念.

    2.通过与小学知识到比较,初步培养学生“类比”的数学思想.

    3.通过线段的比的有关计算,培养学习的计算能力.

    4.通过“引言”及“例1”的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育.

    二、教学设计

    先学后做,启发引导

    三、重点及难点

    1.教学重点两条线段比的概念.

    2.教学难点正确理解两条线段的比及应用.

    四、课时安排

    1课时

    五、教具学具准备

    股影仪、胶片、常用画图工具

    六、教学步骤

    【复习提问】

    找学生回答小学学过的比、比的前项和后项的概念.

    (两个数相除又叫做两数的比,记作或a:b,其中a叫比的前项,b叫比的后项)

    【讲解新课】

    把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:

    等.

    可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.

    一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是,或写成,和数的比一样,a叫比的前项,b叫比的后项.

    关于两条线段比的概念,教学中要揭示它的实质,即表示a是b的k倍,这是学生已有的知识,较易理解,也容易使学生注意到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注意尺度.

    就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注意的问题,归纳出:

    (l)两条线段的比就是它们的长度的比.

    (2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.

    (3)两条线段的比值总是正数.(并不都是正数)

    (4)除了a=b之外,.与互为倒数.

    例1见教材P202.

    讲解完例1后:

    (l)提问学生AB是的多少倍,是AB的多少倍,以加深学生对线段比的逾义的理解.

    (2)给出:比例尺=,就例1的图上,若图距是8cm的两地,实际距离是多少?

    另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习兴趣.

    例2见教材P202.

    讲解完例2后:

    (l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生认识这种三角形中边的比与长度无关.

    (2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为.

    常识2:等腰直角三角形三边(从小到大)的比为1:1:.

    学生掌握了这些常识可有两点好处:

    ①知道例2中“”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.

    【小结】

    1.两条线段比的概念以及应注意的问题.

    2.会求两条线段的比.

    七、布置作业

    教材P210中2、3.

    八、板书设计

    比例线的教学方案


    一、教学目标

    1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

    2.掌握比例基本性质和合分比性质.

    3.通过通过的应用,培养学习的计算能力.

    4.通过比例性质的教学,渗透转化思想.

    5.通过比例性质的教学,激发学生学习兴趣.

    二、教学设计

    先学后做,启发引导

    三、重点及难点

    1.教学重点比例性质及应用.

    2.教学难点正确理解成比例线段及应用.

    四、课时安排

    1课时

    五、教具学具准备

    股影仪、胶片、常用画图工具

    六、教学步骤

    【复习提问】

    1.什么是线段的比?

    2.已知这两条线段的比是吗,为什么?

    【讲解新课】

    1.比例线段:见教材P203页。

    如:见教材P203页图5-2。

    又如:

    即a、b、c、d是成比例线段。

    注:①已知问这四条线段成比例吗?

    (答:成比例。,这里与顺序无关)。

    ②若已知a、b、c、d是成比例线段,是指不能写成(在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

    板书教材P203页比例线段的一些附属概念。

    2.比例的性质:

    (1)比例的基本性质:如果,那么。

    它的逆命题也成立,即:如果,那么。

    推论:如果,那么。

    反之亦然:如果,那么。

    ①基本性质证明了“比例式”和“等积式”是可以互化的。

    ②由,除可得到外,还可得到其它七个比例式。即由一个等积式,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。。再由等式的对称性写出另外四个比例式:。注意区别与联系。

    ③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

    ④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

    (2)合比性质:如果,那么

    证明:∵,∴即:

    同理可证:(找学生板演)

    (3)等比性质:如果

    那么

    证明:设;则

    等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

    例1(要求了解即可)

    (1)已知:,求证:。

    证明:∵,∴

    “通法”:∵,∴即

    (2)已知:,求证:。

    方法一:

    方法二:

    (1)÷(2)得:

    【小结】

    (1)比例线段的概念及附属概念。

    (2)比例的基本性质及其应用。

    八、布置作业

    (1)求

    ①②③

    (2)求下列各式中的x

    ①②③④

    九、板书设计

    比例线段(二)

    1.比例线段:

    教师板书定义

    ………

    比例线段的附属概念

    ………

    2.比例的性质

    (1)比例基本性质

    …………

    注意:(1)

    3.课堂练习

    比例线相关教学方案


    一、教学目标

    1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

    2.掌握比例基本性质和合分比性质.

    3.通过通过的应用,培养学习的计算能力.

    4.通过比例性质的教学,渗透转化思想.

    5.通过比例性质的教学,激发学生学习兴趣.

    二、教学设计

    先学后做,启发引导

    三、重点及难点

    1.教学重点比例性质及应用.

    2.教学难点正确理解成比例线段及应用.

    四、课时安排

    1课时

    五、教具学具准备

    股影仪、胶片、常用画图工具

    六、教学步骤

    【复习提问】

    1.什么是线段的比?

    2.已知这两条线段的比是吗,为什么?

    【讲解新课】

    1.比例线段:见教材P203页。

    如:见教材P203页图5-2。

    又如:

    即a、b、c、d是成比例线段。

    注:①已知问这四条线段成比例吗?

    (答:成比例。,这里与顺序无关)。

    ②若已知a、b、c、d是成比例线段,是指不能写成(在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

    板书教材P203页比例线段的一些附属概念。

    2.比例的性质:

    (1)比例的基本性质:如果,那么。

    它的逆命题也成立,即:如果,那么。

    推论:如果,那么。

    反之亦然:如果,那么。

    ①基本性质证明了“比例式”和“等积式”是可以互化的。

    ②由,除可得到外,还可得到其它七个比例式。即由一个等积式,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。。再由等式的对称性写出另外四个比例式:。注意区别与联系。

    ③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

    ④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

    (2)合比性质:如果,那么

    证明:∵,∴即:

    同理可证:(找学生板演)

    (3)等比性质:如果

    那么

    证明:设;则

    等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

    例1(要求了解即可)

    (1)已知:,求证:。

    证明:∵,∴

    “通法”:∵,∴即

    (2)已知:,求证:。

    方法一:

    方法二:

    (1)÷(2)得:

    【小结】

    (1)比例线段的概念及附属概念。

    (2)比例的基本性质及其应用。

    八、布置作业

    (1)求

    ①②③

    (2)求下列各式中的x

    ①②③④

    九、板书设计

    比例线段(二)

    1.比例线段:

    教师板书定义

    ………

    比例线段的附属概念

    ………

    2.比例的性质

    (1)比例基本性质

    …………

    注意:(1)

    3.课堂练习

    数学教案-比例线


    一、教学目标

    1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

    2.掌握比例基本性质和合分比性质.

    3.通过通过的应用,培养学习的计算能力.

    4.通过比例性质的教学,渗透转化思想.

    5.通过比例性质的教学,激发学生学习兴趣.

    二、教学设计

    先学后做,启发引导

    三、重点及难点

    1.教学重点比例性质及应用.

    2.教学难点正确理解成比例线段及应用.

    四、课时安排

    1课时

    五、教具学具准备

    股影仪、胶片、常用画图工具

    六、教学步骤

    【复习提问】

    1.什么是线段的比?

    2.已知这两条线段的比是吗,为什么?

    【讲解新课】

    1.比例线段:见教材P203页。

    如:见教材P203页图5-2。

    又如:

    即a、b、c、d是成比例线段。

    注:①已知问这四条线段成比例吗?

    (答:成比例。,这里与顺序无关)。

    ②若已知a、b、c、d是成比例线段,是指不能写成(在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

    板书教材P203页比例线段的一些附属概念。

    2.比例的性质:

    (1)比例的基本性质:如果,那么。

    它的逆命题也成立,即:如果,那么。

    推论:如果,那么。

    反之亦然:如果,那么。

    ①基本性质证明了“比例式”和“等积式”是可以互化的。

    ②由,除可得到外,还可得到其它七个比例式。即由一个等积式,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。。再由等式的对称性写出另外四个比例式:。注意区别与联系。

    ③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

    ④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

    (2)合比性质:如果,那么

    证明:∵,∴即:

    同理可证:(找学生板演)

    (3)等比性质:如果

    那么

    证明:设;则

    等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

    例1(要求了解即可)

    (1)已知:,求证:。

    证明:∵,∴

    “通法”:∵,∴即

    (2)已知:,求证:。

    方法一:

    方法二:

    (1)÷(2)得:

    【小结】

    (1)比例线段的概念及附属概念。

    (2)比例的基本性质及其应用。

    八、布置作业

    (1)求

    ①②③

    (2)求下列各式中的x

    ①②③④

    九、板书设计

    比例线段(二)

    1.比例线段:

    教师板书定义

    ………

    比例线段的附属概念

    ………

    2.比例的性质

    (1)比例基本性质

    …………

    注意:(1)

    3.课堂练习

    【相交线对顶角】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...