你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >5.7 利用三角形全等测距离 教案模板
  • 5.7 利用三角形全等测距离 教案模板

    发表时间:2022-01-18

    【www.jk251.com - 全等三角形】

    无论何时,教案都是我们准备教学的一种最好的方式,教案是保证教学质量的基本条件,认真做好教案我们的工作会变得更加顺利,初中教案要写哪些内容呢?可以看看本站收集的《5.7 利用三角形全等测距离 教案模板》,希望能够为您提供参考。

    教学目标:1、能利用三角形的全等解决实际问题,体会数学于实际生活的联系;

    2、能在解决问题的过程中进行有条理的思考和表达.

    教学重点:能利用三角形的全等解决实际问题.

    教学难点:能在解决问题的过程中进行有条理的思考和表达.

    准备活动:

    1、三边对应相等的两个三角形全等,简写为___________或__________;

    2、两角和它们的夹边对应相等的两个三角形全等,简写成_______或_________;

    3、两角和其中一角的对边对应相等的两个三角形全等,简写成_______或_______;

    4、两边和它们的夹角对应相等的两个三角形全等,简写成_______或_______;

    5、全等三角形的性质:两三角形全等,对应边_______,对应角_______;

    6、如图;△adc≌△cba,那么∠abc=∠____,ab=_____;

    7、如图;△abd≌△ace,那么∠bda=∠____,ad=_____.

    教学过程:

    一、探索练习:

    如图:a、b两点分别位于一个池塘的两端,小明想用绳子测量a,b间的距离,但绳子不够长.他叔叔帮他出了一个这样的主意:

    先在地上取一个可以直接到达a点和b点的点c,连接ac并延长到e,使cd=ac;连接bc并延长到e,使ce=cb;连接de并测量出它的长度;

    (1)de=ab吗?请说明理由

    (2)如果de的长度是8m,则ab的长度是多少?

    二、巩固练习:

    1.如图,山脚下有a、b两点,要测出a、b两点的距离.

    (1)在地上取一个可以直接到达a、b点的点o,连接ao并延长到c,使ao=co,你能完成下面的图形?

    (2)说明你是如何求ab的距离.

    2.如图,要量河两岸相对两点a、b的距离,可以在ab的垂线bf上取两点c、d,使cd=bc,再定出bf的垂线df,使a、c、e在一条直线上,这时测得de的长就是ab的长,试说明理由.

    3.如图,a,b两点分别位于一个池塘的两端,完成右图并求出a、b的距离.

    三、提高练习:

    1.在一座楼相邻两面墙的外部有两点a、c,如图所示,请设计方案测量a、c两点间的距离.

    2.如图,一池塘的边缘有a、b两点,试设计两种方案测量a、b两点间的距离

    小结:

    能利用三角形的全等解决实际问题,能在解决问题的过程中进行有条理的思考和表达.

    作业:课本p152习题:1,2.

    教学后记:

    大部分学生能利用三角形的全等解决实际问题,但对解决问题的过程中进行有条理的思考和表达较薄弱.

    JK251.com延伸阅读

    全等三角形


    课题:

    教学目标:

    1、知识目标:

    (1)知道什么是全等形、及的对应元素;

    (2)知道的性质,能用符号正确地表示两个三角形全等;

    (3)能熟练找出两个的对应角、对应边。

    2、能力目标:

    (1)通过角有关概念的学习,提高学生数学概念的辨析能力;

    (2)通过找出的对应元素,培养学生的识图能力。

    3、情感目标:

    (1)通过感受的对应美激发学生热爱科学勇于探索的精神;

    (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

    教学重点:的性质。

    教学难点:找的对应边、对应角

    教学用具:直尺、微机

    教学方法:自学辅导式

    教学过程:

    1、全等形及概念的引入

    (1)动画(几何画板)显示:

    问题:你能发现这两个三角形有什么美妙的关系吗?

    一般学生都能发现这两个三角形是完全重合的。

    (2)学生自己动手

    画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

    (3)获取概念

    让学生用自己的语言叙述:

    、对应顶点、对应角以及有关数学符号。

    2、性质的发现:

    (1)电脑动画显示:

    问题:对应边、对应角有何关系?

    由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

    3、找对应边、对应角以及性质的应用

    (1)投影显示题目:

    D、AD∥BC,且AD=BC

    分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

    说明:本题的解题关键是要知道中两个中,对应顶点定在对应的位置上,易错点是容易找错对应角。

    分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

    说明:根据位置元素来找:有相等元素,其即为对应元素:

    然后依据已知的对应元素找:(1)对应角所对的边是对应边,两个对应角所夹的边是对应边(2)对应边所对的角是对应角,两条对应边所夹的角是对应角。

    说明:利用“运动法”来找

    翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

    旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

    平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

    第12页

    数学教案-全等三角形


    课题:全等三角形

    教学目标:

    1、知识目标:

    (1)知道什么是全等形、全等三角形及全等三角形的对应元素;

    (2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

    (3)能熟练找出两个全等三角形的对应角、对应边。

    2、能力目标:

    (1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

    (2)通过找出全等三角形的对应元素,培养学生的识图能力。

    3、情感目标:

    (1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

    (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

    教学重点:全等三角形的性质。

    教学难点:找全等三角形的对应边、对应角

    教学用具:直尺、微机

    教学方法:自学辅导式

    教学过程:

    1、全等形及全等三角形概念的引入

    (1)动画(几何画板)显示:

    问题:你能发现这两个三角形有什么美妙的关系吗?

    一般学生都能发现这两个三角形是完全重合的。

    (2)学生自己动手

    画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

    (3)获取概念

    让学生用自己的语言叙述:

    全等三角形、对应顶点、对应角以及有关数学符号。

    2、全等三角形性质的发现:

    (1)电脑动画显示:

    问题:对应边、对应角有何关系?

    由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

    3、找对应边、对应角以及全等三角形性质的应用

    (1)投影显示题目:

    D、AD∥BC,且AD=BC

    分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

    说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

    分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

    说明:根据位置元素来找:有相等元素,其即为对应元素:

    然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

    说明:利用“运动法”来找

    翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

    旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

    平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

    求证:AE∥CF

    分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

    ∴AE∥CF

    说明:解此题的关键是找准对应角,可以用平移法。

    分析:AB不是全等三角形的对应边,

    但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

    可利用已知的AD与BC求得。

    说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

    (2)题目的解决

    这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

    投影显示:

    (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

    (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

    (3)有公共边的,公共边一定是对应边;

    (4)有公共角的,角一定是对应角;

    (5)有对顶角的,对顶角一定是对应角;

    两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

    4、课堂独立练习,巩固提高

    此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

    5、小结:

    (1)如何找全等三角形的对应边、对应角(基本方法)

    (2)全等三角形的性质

    (3)性质的应用

    让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

    6、布置作业

    a.书面作业P55#2、3、4

    b.上交作业(中考题)

    思考题:

    板书设计:

    探究活动

    (2)证明:AF∥DE

    全等三角形的教学方案


    课题:

    教学目标:

    1、知识目标:

    (1)知道什么是全等形、及的对应元素;

    (2)知道的性质,能用符号正确地表示两个三角形全等;

    (3)能熟练找出两个的对应角、对应边。

    2、能力目标:

    (1)通过角有关概念的学习,提高学生数学概念的辨析能力;

    (2)通过找出的对应元素,培养学生的识图能力。

    3、情感目标:

    (1)通过感受的对应美激发学生热爱科学勇于探索的精神;

    (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

    教学重点:的性质。

    教学难点:找的对应边、对应角

    教学用具:直尺、微机

    教学方法:自学辅导式

    教学过程:

    1、全等形及概念的引入

    (1)动画(几何画板)显示:

    问题:你能发现这两个三角形有什么美妙的关系吗?

    一般学生都能发现这两个三角形是完全重合的。

    (2)学生自己动手

    画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

    (3)获取概念

    让学生用自己的语言叙述:

    、对应顶点、对应角以及有关数学符号。

    2、性质的发现:

    (1)电脑动画显示:

    问题:对应边、对应角有何关系?

    由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

    3、找对应边、对应角以及性质的应用

    (1)投影显示题目:

    D、AD∥BC,且AD=BC

    分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

    说明:本题的解题关键是要知道中两个中,对应顶点定在对应的位置上,易错点是容易找错对应角。

    分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

    说明:根据位置元素来找:有相等元素,其即为对应元素:

    然后依据已知的对应元素找:(1)对应角所对的边是对应边,两个对应角所夹的边是对应边(2)对应边所对的角是对应角,两条对应边所夹的角是对应角。

    说明:利用“运动法”来找

    翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

    旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

    平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

    求证:AE∥CF

    分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

    ∴AE∥CF

    说明:解此题的关键是找准对应角,可以用平移法。

    分析:AB不是的对应边,

    但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

    可利用已知的AD与BC求得。

    说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

    (2)题目的解决

    这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

    投影显示:

    (1)对应角所对的边是对应边,两个对应角所夹的边是对应边;

    (2)对应边所对的角是对应角,两条对应边所夹的角是对应角;

    (3)有公共边的,公共边一定是对应边;

    (4)有公共角的,角一定是对应角;

    (5)有对顶角的,对顶角一定是对应角;

    两个中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

    4、课堂独立练习,巩固提高

    此练习,主要加强学生的识图能力,同时,找准的对应边、对应角,是以后学好几何的关键。

    5、小结:

    (1)如何找的对应边、对应角(基本方法)

    (2)的性质

    (3)性质的应用

    让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

    6、布置作业

    a.书面作业P55#2、3、4

    b.上交作业(中考题)

    思考题:

    板书设计:

    探究活动

    (2)证明:AF∥DE

    经典初中教案三角形全等的判定


    课题:全等三角形的判定(一)

    教学目标:

    1、知识目标:

    (1)熟记边角边公理的内容;

    (2)能应用边角边公理证明两个三角形全等.

    2、能力目标:

    (1)通过“边角边”公理的运用,提高学生的逻辑思维能力;

    (2)通过观察几何图形,培养学生的识图能力.

    3、情感目标:

    (1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

    (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

    教学重点:学会运用公理证明两个三角形全等.

    教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.

    教学用具:直尺、微机

    教学方法:自学辅导式

    教学过程:

    1、公理的发现

    (1)画图:(投影显示)

    教师点拨,学生边学边画图.

    (2)实验

    让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)

    这里一定要让学生动手操作.

    (3)公理

    启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

    作用:是证明两个三角形全等的依据之一.

    应用格式:

    强调:

    1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

    2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.

    3、平面几何中常要证明角相等和线段相等,其证明常用方法:

    证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.

    证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.

    2、公理的应用

    (1)讲解例1.学生分析完成,教师注重完成后的总结.

    分析:(设问程序)

    “SAS”的三个条件是什么?

    已知条件给出了几个?

    由图形可以得到几个条件?

    解:(略)

    (2)讲解例2

    投影例2:

    例2如图2,AE=CF,AD∥BC,AD=CB,

    求证:

    学生思考、分析,适当点拨,找学生代表口述证明思路

    让学生在练习本上定出证明,一名学生板书.教师强调

    证明格式:用大括号写出公理的三个条件,最后写出

    结论.

    第12页

    相似三角形


    教学建议

    知识结构

    本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理

    重难点分析

    的概念是本节的重点也是本节的难点.是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性.对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误.

    教法建议

    1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念

    2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念

    3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识

    4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解

    5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解

    6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握

    教学设计示例

    一、教学目标

    1.使学生理解并掌握的概念,理解相似比的概念.

    2.使学生掌握预备定理,并了解它的承上启下的作用.

    3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.

    4.通过学习,培养由特殊到一般的唯物辩证法观点.

    二、教学设计

    类比学习、探索发现.

    三、重点、难点

    1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识.

    2.教学难点:是相似比的概念及找对应边.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、常用画图工具.

    六、教学步骤

    【复习提问】

    1.什么叫做全等三角形?它在形状上、大小上有何特征?

    2.两个全等三角形的对应也和对应角有什么关系?

    【讲解新课】

    1.

    的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.

    定义:对应角相等,对应边成比例的三角形,叫做

    符号“∽”,读作:“相似于”,记作:∽,如图所示.

    ∴∽

    反之亦然.即对应角相等,对应边成比例(性质).

    ∵∽,

    另外,具有传递性(性质).

    注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.

    思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?

    (2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?

    2.相似比的概念

    对应边的比K,叫做相似比(或相似系数).

    注:①两个的相似比具有顺序性.

    如果与的相似比是K,那么与的相似比是.

    ②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形.

    3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.∽,如图所示.

    教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:

    (1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.

    (2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成BC截两边所得,其中,本质上与右图是一致的.

    (3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现的错误,如出现错误,教师要及时予以纠正.

    (4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.

    (5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有.

    【小结】

    1.本节学习了的概念.

    2.正确理解相似比的概念,为以后学习的性质打下基础.

    3.重点学习了预备定理及注意的问题.

    七、布置作业

    教材P238中2,3.

    八、板书设计

    【5.7 利用三角形全等测距离 教案模板】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...