你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >4.2 教案模板
  • 4.2 教案模板

    发表时间:2022-01-18

    【www.jk251.com - 课后延时服务总结模板】

    充分准备一份教案是一名教师的职责所在,教案在我们教师的教学中非常重要,一份完整的教案有许多内容,初中教案应该从哪方面来写呢?本站收集整理了一些“4.2 教案模板”,欢迎大家阅读,希望对大家有所帮助。

    教学目标1.在现实情景中深刻理解等式的性质,并能正确运用等式的性质.2.熟练掌握移项法则,利用移项法则解一元一次方程.教学重、难点重点:等式的基本性质,移项法则难点:对等式性质的理解和用移项的法则解方程.教学过程一激情引趣,导入新课解方程:2x-5=3x+6你能说出你解这个方程每一步的依据吗?(一个加数等于和减去_______.)(导入新课:在小学我们学习了解方程,依据是加数与和的关系,因数与积的关系,还有没有别的依据呢?)二合作交流,探究新知1等式的性质问题1(一)班的学生人数等于(二)班的学生人数,现在每班增加2名学生,那么(一)班与(二)班的学生人数还相等吗?如果每班减少了3名学生,那么两个班的学生人数还相等吗?如果(-)班人数为a人,(二)班人数为b人,上面问题用含有a、b的式子怎样表示?问题2如果甲筐米的重量=乙筐米的重量,现在把甲、乙两筐的米分别倒出一半,那么甲,乙两筐剩下的米的重量相等吗?如果设甲筐米的重量为a,乙筐米的重量为b,上面问题用式子怎么表示?从上面两个问题,可以发现等式有什么性质?等式的性质1等式两边都______(或者减去)_________(或同一个式子)所得结果仍是____.等式的性质2等式两边都______(或者除以)_________(或同一个式子)(除数或者除式不能为0),所得结果仍是____.你能用式子表达等式的性质吗?2尝试练习做一做(1)说一说下面等式变形的根据①从x=y得到x+4=y+4,②从a=b得到a+10=b+10③从2x=3x-6得到2x-3x=3x-6-3x④从3x=9得到x=3,⑤从得到x=8用等式的性质解方程:4x+4=3x+12归纳:(1)什么叫移项?把方程的某一项改变____后从方程的一边移到另一边叫______看看下面的变形是移项吗?2x+5-3x+6=9,解:2x-3x+5+6=9练一练用移项的方法解方程12x=x+323x-1=40+2x三应用迁移,巩固提高1实际应用例1(我国古代数学问题)用绳子量井深,把绳子3折来量,井外余绳子4尺;把绳子4折来量,井外余绳子1尺,于是量井人说:“我知道这口井有多深了”。你能算出这口井的深度吗?(做完后交流讨论)2游戏:请你任意圈出下面日历中竖列上三个相邻的数,求出它们的和并告诉我,我就知道你圈出的是哪三个数。四课堂练习,巩固提高1如果单项式与是同类项,则n=___,m=____2如果代数式3x-5与1-2x的值互为相反数,那么x=____3若方程3x-5=4x+1与3m-5=4(m+x)-2m的解相同,求的值p1091,2五反思小结,拓展提高这一节你有什么收获?作业p118,1、2、3

    Jk251.com相关文章推荐

    4.2解一元一次方程(4)_教案模板


    教学目标1.使学生掌握含有以常数为分母的一元一次方程的解法;2.培养学生观察、分析、归纳及概括的能力,加强他们的运算能力.教学重点:含有以常数为分母的一元一次方程的解法.教学难点:正确地去分母.(一)情境创设:与书同(二)探索活动由情景问题入手,引导学生审清题意,根据等量关系:学生总数的+学生总数的+学生总数的+3=学生总数列出方程.即设毕达哥拉斯的学生有x名,想一想由题意得+++3=x.学生独立思考问题,尝试解方程,交流自己的解法,相互加以比较.思考:(1)怎样才能将它化成上节课中所学的方程的类型?(去分母)(2)如何去分母?(方程的每一项都乘以分母的最小公倍数)(三)自学例题1、解方程-=-1解:(本题应如何去分母?学生答)去分母,得4(2x-1)-(10x+1)=3(2x+1)-12,去括号,得移项,得合并同类项,得-8x=-4,系数化1,得x=(1)为了去分母,方程两边应乘以什么数?.(2)去分母应注意什么?.例2、解方程=+1例3、(2x-5)=(x-3)-去分母时须注意:(1)(2)不要漏乘没有分母的项;(3)分数线有括号作用,去掉分母后,若分子是多项式,要加括号,视多项式为一整体.建议进行专项训练,如,-乘以6,8……例4、-=3总结:解方程的一般步骤:1、去分母;2、去括号;3、移项;4、合并同类项;5、系数化为1(四)、教学小结:首先,应让学生思考以下问题,并回答:1.形式上比较复杂的一元一次方程是怎样求解的?2.它的解法的主要思路是什么?3.它的解法的主要步骤是什么?在计算或变形时,要养成良好的教学习惯,注意书写格式的规范性,避免在去分母,去括号、移项时易犯的错误.

    4.2摸到红球的概率的教学方案


    教学目标:

    通过摸球游戏,理解计算一类事件发生可能性的方法,体会概率的意义.

    教学重点:

    1、求事件发生的概率;

    2、理解概率的意义

    教学难点:

    求时间发生的概率

    教学过程:

    先复习基本事件发生的概率:

    (1)掷一枚均匀的骰子,骰子停止转动后6点朝上.

    (2)任意选择电视的某一频道,它正在播动画片.

    (3)广州每年都会下雨.

    (4)任意买一张电影票,座位号是偶数.

    (5)当室外温度低于-10℃时,将一碗水放在室外水会结冰.

    一、探索活动:

    盒子里装有三个白球和一个红球,他们除颜色外完全相同.

    (1)学生上讲台摸球.问题:他最可能摸到什么颜色的球?一定回摸到红球吗?

    (2)如果将每个球都编上号码,分别记为1号球(红)、2号球(红)、3号球(红)、4号球(白)、那么摸到每个球的可能性一样吗?

    让学生摸球,亲身体会事件发生的概率.

    (3)任意摸一个球,说出所有的可能的结果.

    通过该活动让学生掌握下面的这个简单的计算概率的公式:

    p(摸到红球)==

    活动2:盒子里装有三个白球,他们除颜色外完全相同.让学生摸球.

    问题:他会摸到什么颜色的球?一定会摸到白球吗?红球呢?

    结论:必然事件发生的概率为1,记作p(必然事件)=1;不可能事件发生的概率为0,记作p(不可能事件)=0;如果a为不确定事件,那么0

    例1:任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),“6”朝上的概率是多少?

    分析:任意掷一枚均匀的小立方体,所有可能出现的结果有6种:“1”朝上,“2”朝上,“3”朝上,“4”朝上,“5”朝上,“6”朝上,每种结果出现的概率艘相等.其中,“6”朝上的结果只有1种,因此

    p(“6”朝上)=

    巩固练习:

    (1)在乒乓球猜测中,猜在左手的概率为?

    (2)从一副牌中任意抽出一张,

    p(抽到王)=__________;

    p(抽到红桃)=__________;

    p(抽到3的)=__________.

    (3)掷一枚均匀的骰子,(1)p(掷出“2”朝上)=__________;

    (2)p(掷出奇数朝上)=__________;

    (3)p(掷出不大于2的朝上)=_________.

    (4)任意翻一下日历,翻出1月6日的概率是_________,

    翻出4月31日的概率是_____________.

    内容二:

    做一做:用4个出了颜色外完全相同的球设计一个摸球游戏.

    (1)使得摸到白球的概率是,摸到红球的概率也是.

    (2)摸到白球的概率为,摸到红球和黄球的概率都是.

    让学生先独立思考.再通过小组活动的讨论后,个人自由发挥.

    你能有8个出颜色外完全相同的球分别设计满足如上条件的饿游戏吗?

    小结:

    掌握求简单事件发生的概率公式;理解事件发生的概率的意义,明白不是事件的概率大,就是一定会发生该事件的实况.

    作业:课本p108习题4.31、2.

    教学后记:

    学生基本上明白求简单事件的概率公式,并能应用在练习上.而在设计游戏的这个内容中,学生比较少考虑到各个求的大小,形状等方面的限制.需要提醒学生注意要保持事件发生的随机性,才有概率的出现.

    教案模板


    2.1比零小的数(2)

    教学目标:

    1.乐于接受数学信息,能用正、负数表示具有相反意义的量

    2.借助生活中的实例理解有理数的意义,通过将有理数分类,感受分类的思想

    重点:能应用正负数表示具有相反意义的量

    难点:运用有理数表示实际生活问题中的量

    教学设计:

    1.情境创设

    情境(1):课本第15页实例

    操作指导:投影出示日常生活中一些表示具有相反意义的量的实例,让学生感受用正负数来描述它们所带来的便捷

    情境(2):学生自己举一些生活中表示具有相反意义的量的实例

    2.探索活动

    (1).由课本中"零上的气温用正数表示,零下的气温用负数表示"入手,指导学生思考日常生活中还有那些意义相反的事例.又如何用正负数表示这些事例的量.这里可设置一些问题引导学生讨论.如:

    ①.零上温度用正数表示,零下温度用负数表示.你能用正负数表示收入与支出、增产与减产等问题中的相关量吗?

    ②.如果某次智力竞赛加100分表示为+100分,则扣50分如何表示?-200分表示什么意思?

    ⑵.课本第16页例2

    ⑶.有理数的概念

    这是学生第一次接触分类,要让学生初步感受分类思想.让学生感受分类的思想及方法以及有理数分类的另一方法:有理数可以分"正有理数,负有理数,0"

    (让学生模仿课本上的形式写出相应的分类表)

    ⑷.课本第16页"练一练"

    3.关于计算器教学

    由于计算器型号不一定一致,因此负数的输入方法也可能略有不同,可以在课内统一指导学生操作,也可以在课外指导学生阅读计算器使用说明书,让学生自行操作

    4.小结

    各小组互相讨论总结,得出本节课的主要内容:如何用正、负数表示一对具有相反意义的量;有理数的分类

    5.布置作业:课本p17习题2.1第3.4.5题

    建湖县建阳中学张仁勇

    上一篇:第二章有理数2.1比零小的数(1)

    下一篇:2.1比0小的数(一)教学设计

    分教案模板


    一、教学目标

    1.使学生理解并掌握分式的概念,了解有理式的概念;

    2.使学生能够求出分式有意义的条件;

    3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

    4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.

    二、重点、难点、疑点及解决办法

    1.教学重点和难点明确分式的分母不为零.

    2.疑点及解决办法通过类比分数的意义,加强对分式意义的理解.

    三、教学过程

    【新课引入】

    前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)

    【新课】

    1.分式的定义

    (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

    用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

    (2)由学生举几个分式的例子.

    (3)学生小结分式的概念中应注意的问题.

    ①分母中含有字母.

    ②如同分数一样,分式的分母不能为零.

    (4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

    2.有理式的分类

    请学生类比有理数的分类为有理式分类:

    例1当取何值时,下列分式有意义?

    (1);

    解:由分母得.

    ∴当时,原分式有意义.

    (2);

    解:由分母得.

    ∴当时,原分式有意义.

    (3);

    解:∵恒成立,

    ∴取一切实数时,原分式都有意义.

    (4).

    解:由分母得.

    ∴当且时,原分式有意义.

    思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

    例2当取何值时,下列分式的值为零?

    (1);

    解:由分子得.

    而当时,分母.

    ∴当时,原分式值为零.

    小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.

    (2);

    解:由分子得.

    而当时,分母,分式无意义.

    当时,分母.

    ∴当时,原分式值为零.

    (3);

    解:由分子得.

    而当时,分母.

    当时,分母.

    ∴当或时,原分式值都为零.

    (4).

    解:由分子得.

    而当时,,分式无意义.

    ∴没有使原分式的值为零的的值,即原分式值不可能为零.

    (四)总结、扩展

    1.分式与分数的区别.

    2.分式何时有意义?

    3.分式何时值为零?

    (五)随堂练习

    1.填空题:

    (1)当时,分式的值为零

    (2)当时,分式的值为零

    (3)当时,分式的值为零

    2.教材p55中1、2、3.

    八、布置作业

    教材p56中a组3、4;b组(1)、(2)、(3).

    九、板书设计

    课题例1

    1.定义例2

    2.有理式分类

    题教案模板


    课时教案

    课题:课题2燃料和热量

    一、教学目标(知识目标、能力目标、情意目标)

    ⒈知识与技能:⑴知道化石燃料是人类重要的自然资源,对人类生活起着重要作用;同时,知道石油炼制出的几种主要产品及其用途。

    ⑵了解化学反应中的能量变化,认识燃料充分燃烧的重要性。

    ⒉过程与方法:通过一些探究活动,进一步认识与体验科学探究的过程。

    ⒊情感态度与价值观:了解化石燃料的不可再生性,认识合理开采和节约使用化石燃料的重要性。

    二、教学重点⒈煤、石油、天然气三大化石燃料

    ⒉化学变化中能量的变化

    难点⒈燃料充分燃烧的条件和意义

    ⒉化学变化中能量的变化

    三、教学模式(或方法):探究活动与教师讲述结合

    四、教学过程

    复习课题1燃烧的条件⑴可燃物

    ⑵氧气(或空气)

    ⑶温度要达到着火点

    教师强调可燃物有许多是燃料,引导学生阅读课本上第一小节,引出三大化石燃料——煤、石油和天然气。

    一、煤、石油和天然气

    煤:是非常复杂的混合物,主要由碳元素组成,还含有氮、硫等元素,讨论回答课本上有关煤的知识中的探究问题。

    教师小结。

    石油:是非常复杂的混合物,主要由碳、氢元素组成,通过一些方法可以炼制得到许多产品,如汽油、煤油、柴油、石蜡等;讨论回答课本上有关石油的知识中的探究问题。

    教师小结。

    天然气:主要成分是甲烷,化学式为ch4,

    做甲烷燃烧的探究实验,提醒学生一定要检验气体的纯度,让学生观察现象,并根据现象判断出甲烷燃烧的产物是水和二氧化碳,并根据该实验推断出甲烷中含有碳元素和氢元素。

    介绍“可燃冰”

    二、燃烧中能量的变化

    做探究实验——镁带和稀盐酸的反应。

    现象:有气泡生成,试管壁发烫。

    结论:镁带和稀盐酸的反应时要放出热量。

    有的化学反应放热,如物质的燃烧、金属和酸的反应

    有的则吸热,如碳和二氧化碳的反应、木炭还原氧化铜等。

    要使燃料充分燃烧的条件:

    一是要有充足的氧气

    二是要和空气有足够大的接触面积。

    教师小结:⑴知道化石燃料是人类重要的自然资源,对人类生活起着重要作用;同时,知道石油炼制出的几种主要产品及其用途。

    ⑵了解化学反应中的能量变化,认识燃料充分燃烧的重要性。

    矩形教案模板


    一、教学目标

    1.掌握矩形的定义,知道矩形与平行四边形的关系.

    2.掌握矩形的性质定理.

    3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.

    4.通过性质的学习,体会矩形的应用美.

    二、教法设计

    观察、启发、总结、提高,类比探讨,讨论分析,启发式.

    三、重点、难点及解决办法

    1.教学重点:矩形的性质及其推论.

    2.教学难点:矩形的本质属性及性质定理的综合应用.

    四、课时安排

    1课时

    五、教具学具准备

    教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

    六、师生互动活动设计

    教具演示、创设情境,观察猜想,推理论证

    七、教学步骤

    【复习提问】

    什么叫平行四边形?它和四边形有什么区别?

    【引入新课】

    我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形——矩形(写出课题).

    【讲解新课】

    制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).

    矩形的性质:

    既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.

    继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明.引导学生利用平行四边形角的性质证明得出.

    矩形性质定理1:矩形的四个角都是直角.

    矩形性质定理2:矩形对角线相等.

    由矩形性质定理2我们可以得到

    推论:直角三角形斜边上的中线等于斜边的一半.

    (这实际上是△的一个重要性质,即△斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)

    例1已知如图1矩形的两条对角线相交于点,,,求矩形对角线的长.(按教材的格式)

    (强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)

    【总结、扩展】

    1.小结:(用投影打出)

    (1)矩形、平行四边形、四边形从属关系如图.

    (2)矩形性质.

    1.具有平行四边形的所有性质.

    2.特有性质:四个角都是直角,对角线相等.

    3.思考题:已知如图,是矩形对角线交点,平分,,求的度数

    八、布置作业

    教材P158中2、5,P195中7.

    九、板书设计

    十、随堂练习

    教材P146中1、2、3、4

    矩形教学示例第二课时

    一、教学目标

    1.掌握矩形的性质定理.

    2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

    二、教法设计

    观察、启发、总结、提高,类比探讨,讨论分析,启发式.

    三、重点、难点及解决办法

    1.教学重点:矩形的判定.

    2.教学难点:矩形的判定及性质的综合应用.

    四、课时安排

    1课时

    五、教具学具准备

    教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

    六、师生互动活动设计

    教具演示、创设情境,观察猜想,推理论证

    七、教学步骤

    【复习提问】

    1.什么叫做平行四边形?什么叫做矩形?

    2.矩形有哪些性质?

    3.矩形与平行四边形有什么共同之处?有什么不同之处?

    【引入新课】

    1.矩形的判定.

    2.矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法.

    【讲解新课】

    1.矩形判定定理

    矩形判定定理1:有三个角是直角的四边形是矩形.

    矩形判定定理2:对角钱相等的平行四边形是矩形.

    分析判定定理1

    教师问:四边形内角和等于多少度?根据四边形内角和定理,可知第四个角是多少度?最后由定义知此四边形为矩形.

    分析判定定理2

    教师问:如图1,这个定理有几个条件?学生答;有两个.(1)是平行四边形,(2)两条对角线相等.

    教师问:据此只需征什么就可以了?

    学生答:只要证一个角是直角就可以了.

    引导学生完成证明.

    教师问:两条对角线相等的四边形是不是矩形?

    学生答:不是.

    教师问:为什么?

    学生答:因为两条对角线相等,推不出四边形是平行四边形.

    归纳矩形判定方法(由学生小结):

    (1)一个角是直角的平行四边形.

    (2)对角线相等的平行四边形.

    (3)有三个角是直角的四边形.

    2.矩形判定方法的实际应用

    除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.

    3.矩形知识的综合应用

    例2已知的对角线,相交于,△是等边三角形,,求这个平行四边形的面积(图2).

    分析解题思路:

    (1)先判定为矩形.

    (2)求出△的直角边的长.

    (3)计算.

    【总结、扩展】

    1.小结

    (1)矩形的判定方法l、2都是有两个条件:

    ①是平行四边形,②有一个角是直角或对角线相等.

    判定方法3的两个条件是:①是四边形,②有三个直角.

    (2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.

    2.思考题:已知:如图3中,以为斜边作△,又为直角.求证:四边形是矩形.

    八、布置作业

    教材P158中3、4,P159中13(1);P196中8

    九、板书设计

    矩形(二)

    矩形的判定小结

    判定定理1:……例2……(1)……

    判定定理2:……(2)……

    十、随堂练习

    教材P148中1、2

    补充

    1.若是四边形对角线的交点,且,则四边形是()

    A.平行四边形B.矩形C.梯形D.以上答案均不对

    2.已知:在四边形中,,且

    求证:四边形是矩形

    3.已知中,,,,

    求证:四边形是矩形

    圆教案模板


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:①点和的三种位置关系,的有关概念,因为它们是研究的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备.

    难点:①的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.

    2、教法建议

    本节内容需要4课时

    第一课时:的定义和点和的位置关系

    (1)让学生自己画,自己给下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给下定义(参看教案(一));

    (2)点和的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识.

    第二课时:的有关概念

    (1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;

    (2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.

    第三、四课时:点的轨迹

    条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则.

    第一课时:(一)

    教学目标:

    1、理解的描述性定义,了解用集合的观点对的定义;

    2、理解点和的位置关系和确定的条件;

    3、培养学生通过动手实践发现问题的能力;

    4、渗透“观察→分析→归纳→概括”的数学思想方法.

    教学重点:点和的关系

    教学难点:以点的集合定义所具备的两个条件

    教学方法:自主探讨式

    教学过程设计(总框架):

    一、创设情境,开展学习活动

    1、让学生画、描述、交流,得出的第一定义:

    定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做.固定的端点O叫做心,线段OA叫做半径.记作⊙O,读作“O”.

    2、让学生观察、思考、交流,并在老师的指导下,得出的第二定义.

    从旧知识中发现新问题

    观察:

    共性:这些点到O点的距离相等

    想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?

    (1)上各点到定点(心O)的距离都等于定长(半径的长r);

    (2)到定点距离等于定长的点都在上.

    定义2:是到定点距离等于定长的点的集合.

    3、点和的位置关系

    问题三:点和的位置关系怎样?(学生自主完成得出结论)

    如果的半径为r,点到心的距离为d,则:

    点在上d=r;

    点在内d

    点在外d>r.

    “数”“形”

    二、例题分析,变式练习

    练习:已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.

    例1求证:矩形的四个顶点在以对角线的交点为心的同一个上.

    已知(略)

    求证(略)

    分析:四边形ABCD是矩形

    A=OC,OB=OD;AC=BDOA=OC=OB=OD要证A、B、C、D4个点在以O为心的上证明:∵四边形ABCD是矩形∴OA=OC,OB=OD;AC=BD∴OA=OC=OB=OD∴A、B、C、D4个点在以O为心,OA为半径的上.符号的应用(要求学生了解)证明:四边形ABCD是矩形OA=OC=OB=ODA、B、C、D4个点在以O为心,OA为半径的上.小结:要证几个点在同一个上,可以证明这几个点与一个定点的距离相等.问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个上.(让学生探讨)练习1求证:菱形各边的中点在同一个上.(目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成)练习2设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形.(1)和点A的距离等于2cm的点的集合;(2)和点B的距离等于2cm的点的集合;(3)和点A,B的距离都等于2cm的点的集合;(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)三、课堂小结问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:(1)主要学习了的两种不同的定义方法与的三种位置关系;(2)在用点的集合定义时,必须注意应具备两个条件,二者缺一不可;(3)注重对数学能力的培养四、作业82页2、3、4.第二课时:(二)教学目标1、使学生理解弦、弧、弓形、同心、等、等孤的概念;初步会运用这些概念判断真假命题。2、逐步培养学生阅读教材、亲自动手实践,总结出新概念的能力;进一步指导学生观察、比较、分析、概括知识的能力。3、通过动手、动脑的全过程,调动学生主动学习的积极性,使学生从积极主动获得知识。教学重点、难点和疑点1、重点:理解的有关概念.2、难点:对“等”、“等弧”的定义中的“互相重合”这一特征的理解.3、疑点:学生容易把长度相等的两条弧看成是等弧。让学生阅读教材、理解、交流和与教师对话交流中排除疑难。教学过程设计:(一)阅读、理解重点概念:1、弦:连结上任意两点的线段叫做弦.2、直径:经过心的弦是直径.3、弧:上任意两点间的部分叫做弧.简称弧.半弧:的任意一条直径的两个端点分成两条弧,每一条弧叫做半;优弧:大于半的弧叫优弧;劣弧:小于半的弧叫做劣弧.4、弓形:由弦及其所对的弧组成的图形叫做弓形.5、同心:即心相同,半径不相等的两个叫做同心.6、等:能够重合的两个叫做等.7、等弧:在同或等中,能够互相重合的弧叫做等弧.(二)小组交流、师生对话问题:1、一个有多少条弦?最长的弦是什么?2、弧分为哪几种?怎样表示?3、弓形与弦有什么区别?在一个中一条弦能得到几个弓形?4、在等、等弧中,“互相重合”是什么含义?(通过问题,使学生与学生,学生与老师进行交流、学习,加深对概念的理解,排除疑难)(三)概念辨析:判断题目:(1)直径是弦()(2)弦是直径()(3)半是弧()(4)弧是半()(5)长度相等的两段弧是等弧()(6)等弧的长度相等()(7)两个劣弧之和等于半()(8)半径相等的两个半是等弧()(主要理解以下概念:(1)弦与直径;(2)弧与半;(3)同心、等指两个图形;(4)等、等弧是互相重合得到,等弧的条件作用.)(四)应用、练习例1、已知:如图,AB、CB为⊙O的两条弦,试写出图中的所有弧.解:一共有6条弧.、、、、、.(目的:让学生会表示弧,并加深理解优弧和劣弧的概念)例2、已知:如图,在⊙O中,AB、CD为直径.求证:AD∥BC.(由学生分析,学生写出证明过程,学生纠正存在问题.锻炼学生动口、动脑、动手实践能力,调动学生主动学习的积极性,使学生从积极主动获得知识.)巩固练习:教材P66练习中2题(学生自己完成).(五)小结教师引导学生自己做出总结:1、本节所学似的知识点;2、概念理解:①弦与直径;②弧与半;③同心、等指两个图形;④等和等弧.3、弧的表示方法.(六)作业教材P66练习中3题,P82习题l(3)、(4).第三、四课时(三)——点的轨迹教学目标1、在了解用集合的观点定义的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;2、培养学生从形象思维向抽象思维的过渡;3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。重点、难点1、重点:对点的轨迹的认识。2、难点:对点的轨迹概念的认识,因为这个概念比较抽象。教学活动设计(在老师与学生的交流对话中完成教学目标)(一)创设学习情境1、对的形成观察——理解——引出轨迹的概念(使学生在老师的引导下从感性知识到理性知识)观察:是到定点的距离等于定长的的点的集合;(电脑动画)理解:上的点具有两个性质:(1)上各点到定点(心O)的距离都等于定长(半径的长r);(2)到定点距离等于定长的的点都在上;(结合下图)引出轨迹的概念:我们把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.(轨迹的概念非常抽象,是教学的难点,这里教师要精讲,细讲)上面左图符合(1)但不符合(2);中图不符合(1)但符合(2);只有右图(1)(2)都符合.因此“到定点距离等于定长的点的轨迹”是.轨迹1:“到定点距离等于定长的点的轨迹,是以定点为心,定长为半径的”。(研究是轨迹概念的切入口、基础和关键)(二)类比、研究1(在老师指导下,通过电脑动画,学生归纳、整理、概括、迁移,获得新知识)轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线;轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线;(三)巩固概念练习:画图说明满足下列条件的点的轨迹:(1)到定点A的距离等于3cm的点的轨迹;(2)到∠AOC的两边距离相等的点的轨迹;(3)经过已知点A、B的O,心O的轨迹.(A层学生独立画图,回答满足这个条件的轨迹是什么?归纳出每一个题的点的轨迹属于哪一个基本轨迹;B、C层学生在老师的指导或带领下完成)(四)类比、研究2(这是第二次“类比”,目的:使学生的知识和能力螺旋上升.这次通过电脑动画,使A层学生自己做,进一步提高学生归纳、整理、概括、迁移等能力)轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的两条直线;轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.(五)巩固训练练习题1:画图说明满足下面条件的点的轨迹:1.到直线l的距离等于2cm的点的轨迹;2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹.(A层学生独立画图探索;然后回答出点的轨迹是什么,对B、C层学生回答有一定的困难,这时教师要从规律上和方法上指导学生)练习题2:判断题1、到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.()2、和点B的距离等于5cm的点的轨迹,是到点B的距离等于5cm的.()3、到两条平行线的距离等于8cm的点的轨迹,是和这两条平行线的平行且距离等于8cm的一条直线.()4、底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.()(这组练习题的目的,训练学生思维的准确性和语言表达的正确性.题目由学生自主完成、交流、反思)(教材的练习题、习题即可,因为这部分知识属于选学内容,而轨迹概念又比较抽象,不要对学生要求太高,了解就行、理解就高要求)(六)理解、小结(1)轨迹的定义两层意思;(2)常见的五种轨迹。(七)作业教材P82习题2、6.探究活动爱尔特希问题在平面上有四个点,任意三点都可以构成等腰三角形,你能找到这样的四点吗?分析与解:开始自然是尝试、探索,主要应以如何构造出这样的点来考虑.最容易想到的是,使一个点到另三个点等距离,换句话说,以一个点为心,作一个,其他三个点在此上寻找,只要使这上的三点构成等腰三角形即可,于是得到如图中的上面两种形式.其次,取边长都相等的四边形,即为菱形的四个顶点(见图中第3个图).最后,取梯形ABCD,其中AB=BC=CD,且AD=BD=AC,但是这样苛刻条件的梯形存在吗?实际上,只要将任一周5等分,取其中任意四点即可(见图中的第4个图).综上所述,符合题意的四点有且仅有三种构形:①任意等腰三角形的三个顶点及其外接心(即外心);②任意菱形的4个顶点;③任意正五边形的其中4个顶点.上述问题是大数学家爱尔特希(P.Erdos)提出的:“在平面内有n个点,其中任意三点都能构成等腰三角形”中n=4的情形.当n=3、4、5、6时,爱尔特希问题都有解.已经证明,时,问题无解.

    【4.2 教案模板】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...