有理数教案。
按照学校要求,教师都需要用到教案,教案是教师安排教学的依据,要想在教学中不断进取,其秘诀之一就是编写好教案。好的教案都有哪些内容?为了解决大家烦恼,小编特地收集整理了教你写教案: 有理数教学设计怎么写,供大家参考。
三维目标
一、知识与技能
(1)能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算。
(2)能利用计算器进行有理数的乘法运算。
二、过程与方法
经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力。
三、情感态度与价值观
培养学生主动探索,积极思考的学习兴趣。
教学重、难点与关键
1.重点:能用法则进行多个因数的乘积运算。
2.难点:积的符号的确定。
3.关键:让学生观察实例,发现规律。
教具准备
投影仪。
四、 教学过程
1.请叙述有理数的乘法法则。
2.计算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。
五、新授
1.多个有理数相乘,可以把它们按顺序依次相乘。
例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;
又如:(+2)[(-78)]=(+2)(-26)=-52.
我们知道计算有理数的乘法,关键是确定积的符号。
观察:下列各式的积是正的还是负的?
(1)234 (2)234(-4)
(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。
易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。
教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。
2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。
jK251.COm精选阅读
教案范文: 有理数减法教学设计写作范例
无论何时,教案都是我们准备教学的一种最好的方式,我们可以通过教案来进行更好的教学,写出一份教学方案需要经过精心的准备,优秀的教案是什么样子的?可以看看本站收集的《教案范文: 有理数减法教学设计写作范例》,希望能够为您提供参考。
教学目标
知识与技能:
熟记有理数的减法法则,能熟练进行有理数减法运算。
过程与方法:
1.借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;
2.经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。
情感态度价值观:
4.通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。
教学重、难点
重点:有理数减法法则和运算
难点及突破:有理数减法法则的推导
教学用具
多媒体
教学过程设计
一、导入
我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?
生:减法
师:今天我们一起来学习有理数的减法!
二、一起研究
下表是中央气象台发布的20xx年1月28日天气预报中部分城市的和最低气温统计表
城市/°C最低气温/°C
昆明92
杭州6-2
北京-2-12
温差怎么表示?(温差=-最低气温)
1.那么怎么表示这一天的温差呢?学生填表回答
城市表示温差的算式观察到的温差/°C
昆明9-27
杭州
北京
结论:昆明的温差可表示成9-2=7°C
杭州的温差可表示成6-(-2)=8°C
北京的温差可表示成-2-(-12)=10°C
2.现在我们来看这样一组算式,填空:
9+________=7; 6+______=8; -2+_______=10.
3.比较:9-2=7 9+(-2)=7
6-(-2)=8 6+2=8
-2-(-12)=10 -2+(+12)=10
思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。
怎样把加法转化为减法运算?
法则:减去一个数,等于加上这个数的相反数。
4.对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?
例1(略)
注意:减法转化为加法时,减数一定要改变符号
例2 (略)
三、练习:
P28 1、2
四、小结
1.理解有理数减法运算的法则。
2.熟悉有理数减法运算的两个步骤
3.有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。
五、板书设计
1.6 有理数减法
1.减法法则:减去一个数,等于加上这个数的相反数
a-b=a+(-b)
2.例
数学教案-有理数的乘法的教学方案
教学目标
1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
教学设计示例
有理数的乘法(第一课时)
教学目标
1.使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过有理数的乘法运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法法则的理解.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米)①
答:上升了6厘米.
问题2水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米)②
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.
继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.
因此,在进行有理数乘法时,需要时时强调:先定符号后定值.
三、运用举例,变式练习
例1计算:
例2某一物体温度每小时上升a度,现在温度是0度.
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a=-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教师引导学生检验一下(2)中各结果是否合乎实际.
课堂练习
1.口答:
(1)6×(-9);(2)(-6)×(-9);(3)(-6)×9;(4)(-6)×1;
(5)(-6)×(-1);(6)6×(-1);(7)(-6)×0;(8)0×(-6);
2.口答:
(1)1×(-5);(2)(-1)×(-5);(3)+(-5);
(4)-(-5);(5)1×a;(6)(-1)×a.
这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.
3.当a,b是下列各数值时,填写空格中计算的积与和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
5.判断下列方程的解是正数还是负数或0:
(1)4x=-16;(2)-3x=18;(3)-9x=-36;(4)-5x=0.
四、小结
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.
五、作业
1.计算:
(1)(-16)×15;(2)(-9)×(-14);(3)(-36)×(-1);
(4)100×(-0.001);(5)-4.8×(-1.25);(6)-4.5×(-0.32).
2.计算:
3.填空(用“>”或“<”号连接):
(1)如果a<0,b<0,那么ab________0;
(2)如果a<0,b<0,那么ab_______0;
(3)如果a>0时,那么a____________2a;
(4)如果a<0时,那么a__________2a.
探究活动
问题:桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?
答案:“±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.
道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.
初中数学有理数
1.2有理数
【教学目标】
1.掌握有理数的概念;
2.会对有理数按一定的标准进行分类;
3.体检分类.
【对话探索设计】
〖复习〗
我们知道,所有的分数都可以写成两个整数的比.有限小数5.32可以写成两个整数的比吗?所有的有限小数都是分数吗?可以写成两个整数的比吗?是不是分数?
结论:所有的有限小数和无限循环小数都是分数.
〖探索1〗
小学时所指的整数包括正整数和零,学了负整数以后,今后我们所指的整数与小学时所指的整数有什么不同?
结论:正整数﹑零﹑负整数统称整数.
〖探索2〗
下列负数哪些是负分数?
-12,,-0.33,,-12.03,.
〖探索3〗
所有正整数组成正整数集合,所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:
1,0.0708,-700,-π,-3.88,0,,3.14159265,,.
正整数集合:{…}负整数集合:{…}
整数集合:{…}
正分数集合:{…}负分数集合:{…}
(注意:大括号内的省略号表示什么?)
〖探索4〗
为什么不是分数?如果说所有的分数都是小数,对吗?反过来,所有的小数都是分数,对吗?
结论:(1)小数可以分为无限小数和有限小数两类,而无限小数又可分为(无限)循环小数和无限不循环小数两类;
(2)分数一定是小数,小数不一定是分数.
〖探索5〗
整数和分数统称有理数.
在数-100,70.8,-7,π,-3.8,0,,,中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.
(友情提示:π,都是小数,但都不是分数,自然也都不是有理数.你答对了吗?)
〖练习〗
p10.练习
【作业】
p18.习题1.
【补充作业】
1.列出竖式,把分数化为小数.(体会分数不可能是无限不循环小数.)
2.把下列小数化为分数:3.14159,.
【备选素材】
1.判断:
(1)一个有理数,不是正数,就是负数;
(2)一个有理数,不是整数,就是分数;
(3)一个有理数,是分数,就一定是小数;
(4)一个无限小数,如果不循环,就不是有理数;
(5)小数就是分数;
(6)有理数只能分成两类.
(7)负分数不是负数.
2.按符号分,整数可以分为正整数、______和______三类,而分数则分为__________和_________,共两类.
3.分数可以分为有限小数和________________两类.
4.满足什么条件的小数才是有理数?
5.(1)列出竖式,把分数化为小数;(体会分数不可能是无限不循环小数.)
(2)有的小数不是分数,你能举出一个例子吗?
(3)说明为什么0.3是分数,而却不是.
6.有理数可以分为整数和分数两类,还可以按符号分为正有理数﹑____和___________三类.
7.把下列各数填在相应的集合里:
-|-3|,-(-0.072),π,-3.88,,3.14,,.
教你写教案: 美术教学设计怎么写
按照学校要求,教师都需要用到教案,做好教案有利于教学活动的开展,用心编写教案才能促进我们的教学进一步发展,那么如何写一份教案?小编为你推荐《教你写教案: 美术教学设计怎么写》,希望您喜欢。
一、 教材内容:
第三课:手绘线条图像的表达方法(人教版)
二、 教材分析:
教学重点:引导学生初步掌握手绘线条图像的表达方法。
解决方法:通过小组间的游戏练习应用线条简练描绘物体的能力,并应用于绘画中。
教学难点 及解决方法:
教学难点 :抓住事物的特征进行描绘。
解决方法:学生小组讨论解决及师生共同探究解决。
三、 学生分析:
学生学习兴趣浓厚,部分学生还做好了课前预习。但是,大多数学生应用手绘线条刻画事物的能力不高。学习本课比较吃力,应重点辅导。
四、 设计理念:
通过游戏、小组讨论、集体讨论等方法,解决本课问题。并放在实践中去检验。
五、 教学目标 :
德育渗透点:培养学生学习美术的兴趣和爱好,充分认识“生活中处处存在美、关键要靠我们的眼睛去发现” (罗丹语)。
教学知识点:引导学生通过细致的观察,初步了解绘画过程抓住事物特征绘画的重要性。指导学生运用绘画知识表现自己生活中的万事万物。
能力渗透点:鼓励学生关注社会、关注生活,用自己的绘画语言去发现美、创造美。
六、 教具准备:
生活日用品(数件)、磁性白板、手绘线条图片(数件)
七、教学方法:
探究学习法
八、 课时安排:
2课时
九、 教学过程 :
1、手绘线条图片欣赏导入。
老师:同学们好,老师近日画了一张画,大家想不想看一看?
学生(齐声):想。
(老师展示手绘线条图片画。)
老师:谁知道我画的都是什么东西?
(学生争先回答并认真欣赏,产生浓厚兴趣。)
2、师生初步手绘线条图像的表达。
老师谁能用语言来描述一下这些东西,他们都是做什么用的?
(学生发言踊跃,通过发言初步意识事物因作用不同而产生的外形的差异。)
(老师对学生的发言给予鼓励、肯定。)
学生:我也想画出这么美的画,可是我能行吗?(及类似的话)
老师:当然能行!自然界处处存在美,要靠我们自己去发现,但发现后还要想办法把它用我们的画笔描绘下来。我们现在就一起来学习一下如何又快又好地画出我们看见的东西好吗?
学生(齐声):好。
3、师生共同探讨总结手绘线条图像表达的方法。
老师:那么,通过刚才的欣赏,谁说一下我们该如何描绘一件物品呢?
(学生开始分小组边议论边发言,各抒己见。)
(接下来,教师将各小组的讨论结果拿出来与全体学生共同进行探讨总结。)
(各小组相互取长补短,一起完善手绘线条图像表达的方法。)
(最后,老师将探讨结果板书到黑板。)
学生看作品,进一步系统的了解手绘线条图像的表达方法
4、老师总结本科教学内容。
老师:今天,大家的表现太棒了,我们想到了这么多方面。
(老师边总结边板书,并给与一定的补充。进行小结。)
5、内传递本科目标,激发学生兴趣。
老师:我们先来画这几样东西,看看谁画的好。
(此时,学生探索美的兴趣被激发了出来)
学生分组开始写生,老师组织、协调。
(学生分组开始写生。)
课堂内学生自我评析,老师点评总结。
(学生分组出示优秀作品,自我评析,共同欣赏。)
(老师组织、协调并进行总结。)
十、板书设计 :
手绘线条图像的表达方法
1、 手绘线条图像的特点:形象鲜明、绘制快速、用具简单、表达 多样、易于掌握
2、 用具:笔(铅笔、钢笔、圆珠笔、毛笔等)
纸(各种类型纸张均可)
橡皮(可不用)
3、 注意事项:线条力求简洁概括。
抓住绘画对象的特征。
选择最合适的描绘视角。