你的位置:
  • 范文大全
  • >教案
  • >导航
  • >实用教案:实际问题与一元二次方程教学思考之二
  • 实用教案:实际问题与一元二次方程教学思考之二

    发表时间:2022-09-01

    我相信大家都接触过教案,教案能够安排教学的方方面面,用心编写教案才能促进我们的教学进一步发展,怎样写好自己的教案呢?本站收集了《实用教案:实际问题与一元二次方程教学思考之二》,供您参考。

    教学目标

    知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。

    过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。

    情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。

    重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断。

    难点:把数学问题转化为数学问题。

    关键:从积分表中找出等量关系。

    教具:投影仪。

    教法:探究、讨论、启发式教学。

    教学过程

    一、创设问题情境

    用投影仪展示几张比赛场面及比分(学习是生活需要,引起学生兴趣)

    二、引入课题

    教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:① 用式子表示总积分能与胜、负场数之间的数量关系;

    ②某队的胜场总分能等于它的负场总积分么?

    学生充分思考、合作交流,然后教师引导学生分析。

    师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么?你选择哪一行最能说明负一场积几分?

    生:从最下面一行可以发现,负一场积1分。

    师:胜一场呢?

    生:2分(有的用算术法、有的用方程各抒己见)

    师:若一个队胜a场,负多少场,又怎样积分?

    生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14.

    师:问题②如何解决?

    学生通过计算各队胜、负总分得出结论:不等。

    师:你能用方程说明上述结论么?

    生:老师,没有等量关系。

    师:欸,就是,已知里没说,是不是不能用方程解决了?谁又没有大胆设想?

    生:老师,能不能试着让它们相等?

    师:伟大的发明都是在尝试中进行的,试试?

    生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)

    师:x表示什么?可以是分数么?由此你的出什么结论?

    生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的胜场总积分等于负场总积分。

    师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。

    拓展

    如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?

    师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。

    教师引导学生设未知数,列方程。学生试说。

    生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。解得x=2,当x=2时,(24-10x)/4=1。仍然可得负一场积1分,胜一场积2分。

    三、巩固练习

    已知某山区的平均气温与该山的海拔高度的关系见表:

    海拔高度(单位:m)

    100

    200

    300

    400

    平均气温(单位:℃)

    22

    21.5

    21

    20.5

    20

    若某种植物适宜生长在18℃20℃(包括18℃20℃)的山区,请问该植物适宜种在海拔为多少米的山区?

    学生分析题意,思考,在练习本上完成,然后同桌小议,代表发言,教师点拨。

    四、课堂小结:

    让几个学生谈自己的收获,再让一个学生全面总结。

    五、布置作业:

    课本108页8、9题。

    六、教学反思

    本节课主要是借球赛积分表问题传授数学知识的应用。在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。要探究的问题比前几节的问题复杂些,问题情境与实际情况更接近。本节的重点是建立实际问题的方程模型。通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。

    由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。

    Jk251.coM编辑推荐

    一元二次方程


    教学目标

    1.理解直接开平方法与平方根运算的联系,学会用直接开平方法解特殊的一元二次方程;培养基本的运算能力;

    2.知道形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解.培养观察、比较、分析、综合等能力,会应用学过的知识去解决新的问题;

    3.鼓励学生积极主动的参与“教”与“学”的整个过程,体会解方程过程中所蕴涵的化归思想、整体思想和降次策略.

    教学重点及难点

    1、用直接开平方法解一元二次方程;

    2、理解直接开平方法中的整体思想,懂得(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解

    教学过程设计

    一、情景引入,理解方法

    看一看:特殊奥林匹克运动会的会标

    想一想:

    在XX年的特殊奥林匹克运动会的筹备过程中制玩具节举办的更加隆重,xx学校将在运动场搭建一个舞台,其中一个方案是:在运动场正中间搭建一个面积为144平方米的正方形舞台,那么请问这个舞台的各边边长将会是多少米呢?

    解:由题意得:x2=144

    根据平方根的意义得:x=±12

    ∴原方程的解是:x1=12,x2=-12

    ∵边长不能为负数

    ∴x=12

    了解方法:

    上述解方程的方法叫做直接开平方法.通过直接将某一个数开平方,解一元二次方程的方法叫做直接开平方法.

    【说明】用开平方法解形如ax2+c=0(a≠0)的方程有三种可能性,学生归纳是难点,教师要在学生具体感知的基础上进行具体概括.通过两个阶段联系后的探究意在培养学生探究一般规律的能力..

    第三阶段:怎样解方程(1+x)2=144?

    请四人学习小组共同研究,并给出一个解题过程.可以参考课本或其他资料.小组长负责清楚的记录解题过程.

    第四阶段:众人齐心当考官!

    请各四人小组试着编一个类似于(x+1)2=144这样能用直接开平方法解的一元二次方程.

    1、分析学生所编的方程.

    2、从学生的编题中挑出一个方程给学生练习.

    3、出示:思考:下列方程又该如何应用直接开平方法求解呢?

    4(x+1)2-144=0

    归纳:形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解.

    【说明】在第三、四阶段的讲解和练习中教师需让学生体会到其中蕴涵了整体思想.

    三、巩固方法,提高能力

    请大家帮帮忙,挑一挑,拣一拣,下列一元二次方程中,哪些更适宜用直接开平方法来解呢?

    ⑴x2=3⑵3t2-t=0

    ⑶3y2=27⑷(y-1)2-4=0

    ⑸(2x+3)2=6⑹x2=36x

    四、自主小结

    今天我们学会了什么方法解一元二次方程?适合用开平方法解的一元二次方程有什么特点?

    一元二次方程教案八篇


    教案课件是需要教师精心准备的,因此需要我们教师自己花时间去完成。只有做好教案课件的前期准备工作,才能实现预期的教学目标设计。如果您想阅读一篇优秀的文章,教师范文大全编辑建议您去看看“一元二次方程教案”,如果有需要的话,可以参考本文,希望您会喜欢!

    一元二次方程教案【篇1】

    一、教学目标

    【知识与技能】

    掌握应用因式分解的方法,会正确求一元二次方程的解。

    【过程与方法】

    通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。

    【情感态度价值观】

    通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。

    二、教学重难点

    【教学重点】

    运用因式分解法求解一元二次方程。

    【教学难点】

    发现与理解分解因式的方法。

    三、教学过程

    (一)导入新课

    复习回顾:和学生一起回忆平方差、完全平方公式,以及因式分解的常用方法。

    (二)探究新知

    问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?

    学生小组讨论,探究后,展示三种做法。

    问题:小颖用的什么法?——公式法

    小明的解法对吗?为什么?——违背了等式的性质,x可能是零。

    小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。

    问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]

    师引导学生得出结论:

    如果a·b=0,那么a=0或b=0

    (如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)

    “或”有下列三层含义

    ①a=0且b≠0②a≠0且b=0③a=0且b=0

    问题3:

    (1)什么样的一元二次方程可以用因式分解法来解?

    (2)用因式分解法解一元二次方程,其关键是什么?

    (3)用因式分解法解一元二次方程的理论依据是什么?

    (4)用因式分解法解一元二方程,必须要先化成一般形式吗?

    因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。

    老师提示:

    1.用分解因式法的条件是:方程左边易于分解,而右边等于零;

    2.关键是熟练掌握因式分解的知识;

    3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”

    (三)巩固提高

    1.用分解因式法解下列方程吗?

    总结:右化零,左分解,两因式,各求解。

    (四)小结作业

    用因式分解法求解一元二次方程的步骤:

    1.方程化为一般形式;

    2.方程左边因式分解;

    3.至少一个一次因式等于零得到两个一元一次方程;

    4.两个一元一次方程的解就是原方程的解。

    一元二次方程教案【篇2】

    第一步:将已知方程化为一般形式,使方程右端为 0;

    第二步:将左端的二次三项式分解为两个一次因式的积;

    第三步:方程左边两个因式分别为 0,得到两个一次方程,它们的解就是原方程的解.

    一般来说,一元二次方程往往可以用这样2种方法解答,特别是对配方来说,它可能更实用,普遍。

    1.分解因式:

    (1)x2-4x=_________; (2)x-2-x(x-2)=________ (3)m2-9=________;

    3.方程2x(x-2)=3(x-2)的解是___________

    4.方程(x-1)(x-2)=0的两根为x1·x2,且x1>x2,则x1-2x2的值等于_______

    5.已知y=x2+x-6,当x=________时,y的值为0;当x=________时,y的值等于24. 6.方程x2+2ax-b2+a2=0的解为__________.

    一元二次方程教案【篇3】

    由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.

    掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.

    通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题.

    下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):

    乙 13.5元 13.3元 13.9元 13.4元 13.75元

    某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,星期三比星期二增加1300元,这人持有的甲、乙股票各多少股?

    老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.

    上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.

    (学生活动)问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?

    老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.

    解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2=3.31

    以上这一道题与我们以前所学的'一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.

    例1.某电脑公司20xx年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.

    分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.

    (1)某林场现有木材a立方米,预计在今后两年内年平均增长p%,那么两年后该林场有木材多少立方米?

    (2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.

    例2.某人将20xx元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.

    分析:设这种存款方式的年利率为x,第一次存20xx元取1000元,剩下的本金和利息是1000+20xxx・80%;第二次存,本金就变为1000+20xxx・80%,其它依此类推.

    则:1000+20xxx・80%+(1000+20xxx・8%)x・80%=1320

    整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0

    解得:x1=-2(不符,舍去),x2= =0.125=12.5%

    本节课应掌握:

    利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.

    1.教材P53 复习巩固1 综合运用1.

    1.20xx年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是( ).

    A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250

    2.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台售价为( ).

    A.(1+25%)(1+70%)a元 B.70%(1+25%)a元

    C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元

    3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降低的百分数)不得超过d%,则d可用p表示为( ).

    1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.

    2.某糖厂20xx年食糖产量为at,如果在以后两年平均增长的百分率为x,那么预计20xx年的产量将是________.

    3.我国政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品在涨价30%后,20xx年降价70%至a元,则这种药品在年涨价前价格是__________.

    1.为了响应国家“退耕还林”,改变我省水土流失的严重现状,20xx年我省某地退耕还林1600亩,计划到20xx年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.洛阳东方红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.

    3.某商场于第一年初投入50万元进行商品经营,以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.

    (1)如果第一年的年获利率为p,那么第一年年终的总资金是多少万元?(用代数式来表示)(注:年获利率= ×100%)

    (2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.

    二、1.6(1+x) 6(1+x)2 6+6(1+x)+6(1+x)2

    3.

    三、1.平均增长率为x,则1600(1+x)2=1936,x=10%

    即16x2+56x-15=0,解得x= =25%,y=20(台)

    (2)50(1+P)(1+P+10%)=66,整理得:P2+2.1P-0.22=0,解得P=10。

    一元二次方程教案【篇4】

    今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节《实际问题与一元二次方程》的第四课时实验与探究。它是继传播问题、百分率问题、长宽比例问题这几个基本问题的学习后的探索活动课,对于本节课我将从教材分析与学生现实分析、教学目标分析,教法的确定与学法指导,教学过程这四个方面加以阐述。

    一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究体现数学建模的过程帮助学生增强应用认识。

    一元二次方程解实际问题的应用相当广泛,在几何、物理及其它学科中都有应用,因此它成为了初中数学学习的重点。这种应用的广泛性能激发学生学习数学的兴趣和热情,能让学生体会到学数学、做数学、用数学的快乐。本节课主要侧重于一元二次方程在几何方面的应用

    大量事实表明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,这就构成了本节课的难点。

    (二)数学新课程标准要求:

    人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。

    我根据新课标对方程的具体要求和初三学生的认知的特点,确定了如下教学目标的:

    1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。以一元二次方程解决实际问题为载体,加强学生对数学建模的基本方法的掌握。

    2、过程与方法:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

    3、情感、态度与价值观:通过用一元二次解决实际问题,体会数学知识应用的价值,了解数学对促进社会进步和发展的作用。激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识。

    教学重点、难点及解决措施:

    教师引导,学生自主探索、合作交流。

    我们学校在去年实行了杜郎口中学的三三六的教学模式立体式、大容量、快节奏;自主学习三模块:预习、展示、反馈;课堂展示六环节:预习交流、明确目标、分组合作、展现提升、穿插巩固、达标测评。对于每个专题都要经历预习、展示和达标检测三个环节,经过一年的训练,学生们已经有较好的自学能力和小组合作能力,实践表明,学生给学生讲题,同学们会更有兴趣,也更容易接受,学生通过自我展示不但能激发他们的表现欲,还能提高语言表达能力和竞争意识。

    我们让各个小组轮流来当课堂“小老师”,以提高他们的`合作水平和对试题的阅读理解能力,同学们和教师也会根据每个“小老师”讲解的具体情况来进行修正和补充,强调重点,总结规律。为了鼓励学生勤于思考,善于发问,我在课堂上引入“奖励分”制度,对于独特解法或有提出创造性问题的同学和小组给予1——3分的奖励。本节课是对一元二次方程应用的基本问题的学习后的探索活动课,在预习课上我已经下发了试题学案,并给每个小组分配了展示任务。学案上我选用了了四道实际问题,要求同学们找出试题特点和关键词语以及易错点,并用硬纸板和铁丝做出相应的试题模型。预习课上学生先做题再合作,同学们之间有充分的交流和讨论。

    心理学研究表明,当外部刺激唤起主体的情感活动时,就更容易成为注意的中心,由此我选了这样的几道题:

    1、在信息时代,邮政特快专递越来越受到广大用户的青睐。我们同学要给“希望小学”邮寄一些学习用具,为了保证学习用具不受潮损坏,同学们决定自己制作一个包装盒,为此,选用长80厘米,宽60厘米的纸板,在四个角截出四个大小相同的正方形,然后把四边折起,做成一个底面积为1500平方厘米的无盖长方体盒子,并配上相应的盖子,同学们想一想怎样求出盒子的高?

    我先让每一个小组展示用硬纸板制作的模型,相互比较形状各异的长方体的纸盒,谈一谈有什么发现,同学们会说:截出正方形的边长不同,盒子的高,底面积也不同,还有正方形的边长就是盒子的高。展示小组再将问题具体解答,不难列出方程并解出方程的解,教师追问展示小组请说出解这道题需要注意

    一元二次方程教案【篇5】

    教学目标:

    1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型

    2、理解什么是一元二次方程及一元二次方程的一般形式。

    3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

    教学重点

    1、一元二次方程及其它有关的概念。

    2、利用实际问题建立一元二次方程的数学模型。

    教学难点

    1、建立一元二次方程实际问题的数学模型

    2、把一元二次方程化为一般形式

    教学方法:指导自学,自主探究

    课时:第一课时

    教学过程:

    (学生通过导学提纲,了解本节课自己应该掌握的内容)

    一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)

    1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程。

    2、你发现上述三个方程有什么共同特点?

    你能把这些特点用一个方程概括出来吗?

    3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念

    你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?

    二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)

    1、下列哪些是一元二次方程?哪些不是?

    ①②③

    ④x2+2x-3=1+x2 ⑤ax2+bx+c=0

    2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

    (1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)

    3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?

    4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?

    5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?

    三、反思:(学生,进一步加深本节课所学内容)

    这节课你学到了什么?

    四、自查自省:(通过当堂小测,及时发现问题,及时应对)

    1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个

    (1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

    3、关于x的方程(㎡-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.

    作业:必做题:习题7.1

    选做题:(挑战自我)p41随堂练习

    1、已知关于的方程是一元二次方程,则为何值?

    2、当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?

    3、关于的一元二次方程(m-1)x2+x+㎡-1=0有一根为,则的值多少?

    4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种(如图),根据两种设计各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2?

    (1)(2)

    板书设计:一元二次方程

    定义:一个未知数整式方程可以化为

    一般形式ax2+bx+c=0(a、b、c为常数,a≠0)

    二次项一次项常数项

    系数为a系数为b

    教学反思

    这次我参加了区里组织的优质

    课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。

    首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间

    其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。

    再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。

    我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。

    一元二次方程教案【篇6】

    1、会根据具体问题中的数量关系列一元二次方程并求解。

    2、能根据问题的实际意义,检验所得结果是否合理。

    3、进一步掌握列方程解应用题的步骤和关键。

    (一)思考课本探究1回答下列问题:

    (1)设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感。

    (2)在第二轮传染中,传染源是 人,这些人中每一个人又传染了 人,那么第二轮传染了 人,第二轮传染后,共有 人患流感。

    (3)根据等量关系列方程并求解。为什么要舍去一解?

    (4)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?

    (5)完成教材思考:如果按照这样的传播速度,三轮传染后,有多少人患流感?

    (学生在交流中解决问题,教师深入小组讨论,对疑惑较多的问题要点拨;前两个问是解题的关键,可作适当点拨。最后思考题,可让学生试试独立完成。教给学生如何审题,分析题。)

    三、例题学习:

    例1:青山村种的水稻20xx年平均每公顷产7200kg,20xx年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率。 (学生独立思考、练习。一学生板书,教师巡视后讲解)

    例2:(教材探究2)两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?

    (给学生分组求解,然后比较哪个小组做的有快又准。最后比较哪种药品成本平均下降率较大。)

    四、课堂练习:(学生独立思考、练习。一学生板书,教师巡视后讲解)

    1、某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?

    2、有一人患了流感,经过两轮传染后共有121人患了流感,奥执染中平均一个人传染了几个人?

    1、列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。

    2、探究2是平均增长率或降低率问题。若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有: (常见n=2)

    教后记:

    本节课是一元二次方程的应用第一课时。通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:

    一、通过学生口答,复习了列方程解应用题的一般步骤及解一元二次方程的方法,为学习本节知识打好了基础。

    二、问题探究通过问题串让学生解决的问题由浅入深,由易到难,也让学生解决问题的能力逐级上升,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。

    三、本节课第一个例题,是增长率问题中的一个典型例题,我在引导学生解决此题之后,进一步总结了列方程解应用题的步骤。不仅关注结果更关注过程,让学生养成良好的解题习惯。

    四、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。

    五、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。

    六、需改进的方面:

    1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如例2有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示、

    2、只考虑扑捉学生的思维亮点,一学生列错了方程,我没有给予及时纠正。导致使一些同学陷入误区、

    3、下课后很多学生和我沟通课上一学生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表个人的不同见解的学风。

    一元二次方程教案【篇7】

    教学目标

    掌握b2—4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2—4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2—4ac

    通过复习用配方法解一元二次方程的b2—4ac>0、b2—4ac=0、b2—4ac

    重难点关键

    1、重点:b2—4ac>0 一元二次方程有两个不相等的实根;b2—4ac=0 一元二次方程有两个相等的实数;b2—4ac

    2、难点与关键

    从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2—4ac的情况与根的情况的关系。

    教具、学具准备

    小黑板

    教学过程

    一、复习引入

    (学生活动)用公式法解下列方程。

    (1)2x2—3x=0 (2)3x2—2 x+1=0 (3)4x2+x+1=0

    老师点评,(三位同学到黑板上作)老师只要点评(1)b2—4ac=9>0,有两个不相等的实根;(2)b2—4ac=12—12=0,有两个相等的实根;(3)b2—4ac=│—4×4×1│=

    二、探索新知

    方程b2—4ac的值b2—4ac的符号x1、x2的关系

    (填相等、不等或不存在)

    2x2—3x=0

    3x2—2 x+1=0

    4x2+x+1=0

    请观察上表,结合b2—4ac的符号,归纳出一元二次方程的根的情况。证明你的猜想。

    从前面的具体问题,我们已经知道b2—4ac>0(

    求根公式:x= ,当b2—4ac>0时,根据平方根的意义, 等于一个具体数,所以一元一次方程的x1= ≠x1= ,即有两个不相等的实根。当b2—4ac=0时,根据平方根的意义 =0,所以x1=x2= ,即有两个相等的实根;当b2—4ac

    因此,(结论)(1)当b2—4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1= ,x2= 。

    (2)当b—4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2= 。

    (3)当b2—4ac

    例1、不解方程,判定方程根的情况

    (1)16x2+8x=—3 (2)9x2+6x+1=0

    (3)2x2—9x+8=0 (4)x2—7x—18=0

    分析:不解方程,判定根的情况,只需用b2—4ac的值大于0、小于0、等于0的情况进行分析即可。

    解:(1)化为16x2+8x+3=0

    这里a=16,b=8,c=3,b2—4ac=64—4×16×3=—128

    所以,方程没有实数根。

    三、巩固练习

    不解方程判定下列方程根的情况:

    (1)x2+10x+26=0 (2)x2—x— =0 (3)3x2+6x—5=0 (4)4x2—x+ =0

    (5)x2— x— =0 (6)4x2—6x=0 (7)x(2x—4)=5—8x

    四、应用拓展

    例2、若关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示)。

    分析:要求ax+3>0的解集,就是求ax>—3的解集,那么就转化为要判定a的值是正、负或0。因为一元二次方程(a—2)x2—2ax+a+1=0没有实数根,即(—2a)2—4(a—2)(a+1)

    解:∵关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数根。

    ∴(—2a)2—4(a—2)(a+1)=4a2—4a2+4a+8

    a

    ∵ax+3>0即ax&

    gt;—3

    ∴x

    ∴所求不等式的解集为x

    五、归纳小结

    本节课应掌握:

    b2—4ac>0 一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2—4ac=0 一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2—4ac

    六、布置作业

    1、教材P46 复习巩固6 综合运用9 拓广探索1、2。

    2、选用课时作业设计。

    第7课时作业设计

    一、选择题

    1、以下是方程3x2—2x=—1的解的情况,其中正确的有( )。

    A、∵b2—4ac=—8,∴方程有解

    B、∵b2—4ac=—8,∴方程无解

    C、∵b2—4ac=8,∴方程有解

    D、∵b2—4ac=8,∴方程无解

    2、一元二次方程x2—ax+1=0的两实数根相等,则a的值为( )。

    A、a=0 B、a=2或a=—2

    C、a=2 D、a=2或a=0

    3、已知k≠1,一元二次方程(k—1)x2+kx+1=0有根,则k的取值范围是( )。

    A、k≠2 B、k>2 C、k

    二、填空题

    1、已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________。

    2、不解方程,判定2x2—3=4x的根的情况是______(填"二个不等实根"或"二个相等实根或没有实根")。

    3、已知b≠0,不解方程,试判定关于x的一元二次方程x2—(2a+b)x+(a+ab—2b2)=0的根的情况是________。

    三、综合提高题

    1、不解方程,试判定下列方程根的情况。

    (1)2+5x=3x2 (2)x2—(1+2 )x+ +4=0

    2、当c

    3、不解方程,判别关于x的方程x2—2kx+(2k—1)=0的根的情况。

    4、某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7。2亿元,求该集团2000年到2002年的年销售总额的平均增长率。

    一元二次方程教案【篇8】

    教学目标

    知识与技能目标

    1、构建本章的部分知识框图。

    2、复习一元二次方程的概念、解法。

    过程与方法

    1、通过对本章方程解法的复习,进一步提高学生的运算能力。

    2、在解一元二次方程的过程中体会转化等数学思想。

    情感、态度与价值观

    通过师生共同的活动,使学生在交流和反思的过程中建立本章的知识体系,从而体验学习数学的成就感.

    教学重点

    1、一元二次方程的概念

    2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;

    教学难点

    解法的灵活选择;例4和例5的解法。

    教学过程

    一、创设情境

    导入新课

    问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)

    二、师生互动

    共同探究

    1、复习概念

    例1

    例2

    2、四种解法

    (1)

    解法及其关系

    (2)

    根的形式

    x1=3

    x2=4

    (3)熟悉解法

    例3用四种解法分别解此方程

    (4)方法优选

    3、方法补充

    例4

    4、解法纠错

    例5

    解关于x的方程

    错误解法

    正确解法

    三、小结反思

    提炼思想

    我们有哪些收获?解方程的思想方法是什么?

    四、布置作业

    巩固提高

    【实用教案:实际问题与一元二次方程教学思考之二】相关推荐
    五年级下学期班主任工作计划 优秀范文模板

    充分准备一份教案是一名优秀教师的职责所在,我们可以通过教案来进行更好的教学,每一位教师都要慎重考虑教案的设计,你是否在烦恼教案怎么写呢?可以看看本站收集的《五年级下学期班主任工作计划 优秀范文模板》,希望能够为您提供参考。五年级下学期班主任工作计划新的一学期又开始了,为了在新的学期里把工作做好,把我...

    2024春四年级班主任工作计划

    按照学校要求,教师都需要用到教案,教案在我们教师的教学中非常重要,做好教案对我们未来发展有着很重要的意义,如何才能写好教案呢?下面是小编特地为大家整理的“春四年级班主任工作计划”。20xx春四年级下学期班主任工作计划本学期我继续担任四年级的班主任,为了更好地开展工作,现拟订本学期班主任工作计划。一、...