你的位置:
  • 范文大全
  • >教案
  • >导航
  • >最新教案: 分数的基本性质教学反思(示范文档)
  • 最新教案: 分数的基本性质教学反思(示范文档)

    发表时间:2022-08-29

    分式的基本性质。

    按照学校要求,教师都需要用到教案,教案在我们教师的教学中非常重要,做好教案对我们未来发展有着很重要的意义,如何才能写好教案呢?下面是小编特地为大家整理的“最新教案: 分数的基本性质教学反思(示范文档)”。

    《分数的基本性质》一课是人教版五年级下册第四单元的一个内容。这部分内容是学生在学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律非常的重要。对这部分内容我是这样设计教学的:

    1、本节课以学生探究发现分数基本性质的过程为教学重点,我在设计这节课时,运用我校倡导“三环六步”教学模式,三环六步教学模式介绍放手让学生自主探究,经历“猜想——验证——总结”的学习过程,以“猜想”故事结论引入,引导学生大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想。让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,使学生理解并掌握分数的基本性质,学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数。

    2、教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。

    3、在推导规律的过程中,抓住分数的分子、分母按怎样的规律变化而分数大小不变这一点,通过动手操作、实践, 引导学生自己去发现、证实并归纳:分数的分子分母同时乘或除以一个相同的数(零除外),分数的大小不变。在这关键处,教师又进一步发动全班讨论,把问题引向纵深,这种教学模式既重视学生自主参与,相互合作的发挥,又有利于学生展现自己知识的建构过程,不仅知其结果,而且更了解自己得出结果的过程和先决条件,促进知识与能力的同步发展。jK251.com

    jK251.com其他人还在看

    热搜教案: 分数的基本性质教学思考(篇三)


    当我们提起教学,你印象最深刻的一定是教案吧。编写教案能够提高自己的教学研究能力,要想在教学中不断进取,其秘诀之一就是编写好教案。对于教案的撰写你是否毫无头绪呢?下面是由小编为大家整理的热搜教案: 分数的基本性质教学思考(篇三),仅供参考,欢迎大家阅读。

    学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:

    1、学生在故事情境中大胆猜想。

    通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。

    2、学生在自主探索中科学验证。

    在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。

    3、让学生在分层练习中巩固深化。

    在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。

    反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

    分式的基本性质


    第一课时

    (一)教学过程

    【复习提问】

    1.分式的定义?

    2.分数的基本性质?有什么用途?

    【新课】

    1.类比分数的基本性质,由学生小结出:

    分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:

    (其中是不等于零的整式.)

    2.加深对分式基本性质的理解:

    例1下列等式的右边是怎样从左边得到的?

    (1);

    由学生口述分析,并反问:为什么?

    解:∵

    ∴.

    (2);

    学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件.)

    解:∵

    ∴.

    (3)

    学生口答.

    解:∵,

    ∴.

    例2填空:

    (1);

    (2);

    (3);

    (4).

    把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.

    例3不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.

    (1);

    分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?

    解:.

    (2).

    解:.

    例4判断取何值时,等式成立?

    学生分组讨论后得出结果:

    ∴.

    (二)随堂练习

    1.当为何值时,与的值相等()

    A.B.C.D.

    2.若分式有意义,则,满足条件为()

    A.B.C.D.以上答案都不对

    3.下列各式不正确的是()

    A.B.

    C.D.

    4.若把分式的和都扩大两倍,则分式的值

    A.扩大两倍B.不变

    C.缩小两倍D.缩小四倍

    (三)总结、扩展

    1..

    2.性质中的可代表任何非零整式.

    3.注意挖掘题目中的隐含条件.

    4.利用将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件.

    (四)布置作业

    教材P61中2、3;P62中B组的1

    (五)板书设计

    不等式它的基本性质


    一、素质教育目标

    (一)知识教学点

    1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.

    2.灵活运用不等式的基本性质进行不等式形.

    (二)能力训练点

    培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.

    (三)德育渗透点

    培养学生积极主动的参与意识和勇敢尝试、探索的精神.

    (四)美育渗透点

    通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

    二、学法引导

    1.教学方法:观察法、探究法、尝试指导法、讨论法.

    2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.

    三、重点·难点·疑点及解决办法

    (一)重点

    掌握不等式的三条基本性质,尤其是不等式的基本性质3.

    (二)难点

    正确应用不等式的三条基本性质进行不等式变形.

    (三)疑点

    弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.

    (四)解决办法

    讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.

    四、课时安排

    一课时

    五、教具学具准备

    投影仪或电脑、自制胶片.

    六、师生互动活动设计

    1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.

    2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.

    3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.

    七、教学步骤

    (-)明确目标

    本节课主要学习不等式的三条基本性质并能熟练地加以应用.

    (二)整体感知

    通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.

    (三)教学过程

    1.创设情境,复习引入

    什么是等式?等式的基本性质是什么?

    学生活动:独立思考,指名回答.

    教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.

    请同学们继续观察习题:

    (1)用“>”或“<”填空.

    ①7+3____4+3②7+(-3)____4+(-3)

    ③7×3____4×3④7×(-3)____4×(-3)

    (2)上述不等式中哪题的不等号与7>4一致?

    学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.

    【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.

    不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.

    学生活动:观察思考,猜想出不等式的性质.

    教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”

    师生活动:师生共同叙述不等式的性质,同时教师板书.

    不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.

    对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?

    学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.

    【教法说明】观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?

    师生活动:由学生概括总结不等式的其他性质,同时教师板书.

    不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.

    不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变.

    师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.

    学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.

    强调:要特别注意不等式基本性质3.

    实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.

    不等式的基本性质与等式的基本性质有哪些区别、联系?

    学生活动:思考、同桌讨论.

    归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.

    ①若,则,;

    ②若,且,则,;

    ③若,且,则,.

    师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.

    注意:不等式除了上述性质外,还有以下性质:①若,则.②若,且,则,这些先不要向学生说明.

    2.尝试反馈,巩固知识

    请学生先根据自己的理解,解答下面习题.

    例1根据不等式的基本性质,把下列不等式化成或的形式.

    (1)(2)(3)(4)

    学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.

    教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.

    解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.

    所以

    (2)根据不等式基本性质1,两边都减去,得

    (3)根据不等式基本性质2,两边都乘以2,得

    (4)根据不等式基本性质3,两边都除以-4得

    【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.

    例2设,用“<”或“>”填空.

    (1)(2)(3)

    学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.

    解:(1)因为,两边都减去3,由不等式性质1,得

    (2)因为,且2>0,由不等式性质2,得

    (3)因为,且-4<0,由不等式性质3,得

    教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.

    注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

    【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.

    3.变式训练,培养能力

    (1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)

    ①∵∴()②∵∴()

    ③∵∴()④∵∴()

    ⑤∵∴⑥∵∴()

    学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.

    答案:

    ①(A)②(B)

    ③(C)④(C)

    ⑤(C)⑥(A)

    【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.

    (2)单项选择:

    ①由得到的条件是()

    A.B.C.D.

    ②由由得到的条件是()

    A.B.C.D.

    ③由得到的条件是()

    A.B.C.D.是任意有理数

    ④若,则下列各式中错误的是()

    A.B.C.D.

    师生活动:教师选出答案,学生判断正误并说明理由.

    答案:①A②D③C④D

    (3)判断正误,正确的打“√”,错误的打“×”

    ①∵∴()②∵∴()

    ③∵∴()④若,则∴,()

    学生活动:一名学生说出答案,其他学生判断正误.

    答案:①√②×③√④×

    【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.

    (四)总结、扩展

    1.本节重点:

    (1)掌握不等式的三条基本性质,尤其是性质3.

    (2)能正确应用性质对不等式进行变形.

    2.注意事项:

    (1)要反复对比不等式性质与等式性质的异同点.

    (2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.

    3.考点剖析:

    不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.

    八、布置作业

    (一)必做题:P61A组4,5.

    (二)选做题:P62B组1,2,3.

    参考答案

    (一)4.(1)(2)(3)(4)

    5.(1)(2)(3)(4)

    (5)(6)

    (二)1.(1)(2)(3)

    2.(1)(2)(3)(4)

    3.(1)(2)(3)

    九、板书设计

    6.1不等式和它的基本性质(二)

    一、不等式的基本性质

    1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.

    若,则,.

    2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若,,则.

    3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若,,则.

    二、应用

    例1解(1)(2)

    (3)(4)

    例2解(1)(2)

    (3)

    三、小结

    注意不等式性质3的应用.

    十、背景知识与课外阅读

    盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?

    数学教案-分式的基本性质教案模板


    第一课时

    (一)教学过程

    【复习提问】

    1.分式的定义?

    2.分数的基本性质?有什么用途?

    【新课】

    1.类比分数的基本性质,由学生小结出分式的基本性质:

    分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:

    (其中是不等于零的整式.)

    2.加深对分式基本性质的理解:

    例1下列等式的右边是怎样从左边得到的?

    (1);

    由学生口述分析,并反问:为什么?

    解:∵

    ∴.

    (2);

    学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件.)

    解:∵

    ∴.

    (3)

    学生口答.

    解:∵,

    ∴.

    例2填空:

    (1);

    (2);

    (3);

    (4).

    把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.

    例3不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.

    (1);

    分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?

    解:.

    (2).

    解:.

    例4判断取何值时,等式成立?

    学生分组讨论后得出结果:

    ∴.

    (二)随堂练习

    1.当为何值时,与的值相等()

    A.B.C.D.

    2.若分式有意义,则,满足条件为()

    A.B.C.D.以上答案都不对

    3.下列各式不正确的是()

    A.B.

    C.D.

    4.若把分式的和都扩大两倍,则分式的值

    A.扩大两倍B.不变

    C.缩小两倍D.缩小四倍

    (三)总结、扩展

    1.分式的基本性质.

    2.性质中的可代表任何非零整式.

    3.注意挖掘题目中的隐含条件.

    4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件.

    (四)布置作业

    教材P61中2、3;P62中B组的1

    (五)板书设计

    【最新教案: 分数的基本性质教学反思(示范文档)】相关推荐
    五年级下学期班主任工作计划 优秀范文模板

    充分准备一份教案是一名优秀教师的职责所在,我们可以通过教案来进行更好的教学,每一位教师都要慎重考虑教案的设计,你是否在烦恼教案怎么写呢?可以看看本站收集的《五年级下学期班主任工作计划 优秀范文模板》,希望能够为您提供参考。五年级下学期班主任工作计划新的一学期又开始了,为了在新的学期里把工作做好,把我...

    2022春四年级班主任工作计划

    按照学校要求,教师都需要用到教案,教案在我们教师的教学中非常重要,做好教案对我们未来发展有着很重要的意义,如何才能写好教案呢?下面是小编特地为大家整理的“春四年级班主任工作计划”。20xx春四年级下学期班主任工作计划本学期我继续担任四年级的班主任,为了更好地开展工作,现拟订本学期班主任工作计划。一、...