你的位置:
  • 范文大全
  • >教案
  • >导航
  • >实用教案:《点与圆的位置关系》教学思考范文网页版
  • 实用教案:《点与圆的位置关系》教学思考范文网页版

    发表时间:2022-08-26

    圆和圆的位置关系。

    按照惯例,老师必须撰写自己的教案,教案有利于教学水平的提高,每一位教师都要慎重考虑教案的设计,如何才能写好教案呢?本站收集了《实用教案:《点与圆的位置关系》教学思考范文网页版》,供您参考。

    《点与圆的位置关系》是人教版九年级上册第二十四章第二节,这一节分为两个部分(即点与圆的位置关系和外接圆、外心),本节课主要学习了点与圆的三种位置关系。在理解圆的定义的基础上展开了点与圆的位置关系教学,通过圆的定义得到了圆内点到圆心的距离都小于半径,圆上点到圆心的距离都等于半径,圆外点到圆心的距离都大于半径,每一个圆都把平面上的点分成三部分:圆内的点、圆上的点和圆外的点。学生理解透彻,掌握较好。

    反思教学方法:

    本节课我结合九年级学生的认知特点,从学生已有的生活经验和知识出发,让学生通过自己归纳,、总结,并且主动的研究,从而学会知识。学生先学,先练,老师后讲,后教,促使他们在自主探究的过程中,真正理解和掌握数学知识,数学思想和数学方法,同时获得广泛的数学经验,效果较为理想。

    反思目标完成情况:

    目标1:学生能够清楚的口述点和圆的位置关系以及相对应的点到圆心的距离和半径的大小关系。

    目标2:通过动手探究,知道了不在同一条直线上的三个点可以确定一个圆。但有十个同学因动手作图能力差,最后实在别人的帮助下完成的自学任务,还有三个同学竟然没有作图工具。

    目标3:掌握了三角形的外接圆和外心概念,都能准确的找见三角形的外心并作出三角形的外接圆。

    反思教学设计:

    每个环节缺少相对应的练习题是这节课最大的失败之处,因为课前考虑到学生的动手探究能力差,耗时,为了完成教学任务,因此没有设置相应的练习题。特别是在“探究1”环节,学生虽对点与圆的位置关系掌握较好,但在一般的习题中,多考查由“点到圆心的距离”推出“点和圆的位置关系”,反推得难度相对于顺推稍高,所以恐学生解决问题存有困难,且解题过程的书写存有问题,在课后辅导中要进行训练。

    JK251.com延伸阅读

    直线圆的位置关系


    教学目标:

    1.使学生理解直线和圆的相交、相切、相离的概念。

    2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。

    3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。

    重点难点:

    1.重点:直线与圆的三种位置关系的概念。

    2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。

    教学过程:

    一.复习引入

    1.提问:复习点和圆的三种位置关系。

    (目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)

    2.由日出升起过程中的三个特殊位置引入直线与圆的位置关系问题。

    (目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)

    二.定义、性质和判定

    1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。

    (1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。

    (2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。

    (3)直线和圆没有公共点时,叫做直线和圆相离。

    2.直线和圆三种位置关系的性质和判定:

    如果⊙O半径为r,圆心O到直线l的距离为d,那么:

    (1)线l与⊙O相交d<r

    (2)直线l与⊙O相切d=r

    (3)直线l与⊙O相离d>r

    三.例题分析:

    例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。

    ①当r=时,圆与AB相切。

    ②当r=2cm时,圆与AB有怎样的位置关系,为什么?

    ③当r=3cm时,圆与AB又是怎样的位置关系,为什么?

    ④思考:当r满足什么条件时圆与斜边AB有一个交点?

    四.小结(学生完成)

    五、随堂练习:

    (1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。

    (2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。

    ①当d=5cm时,直线L与圆的位置关系是;

    ②当d=13cm时,直线L与圆的位置关系是;

    ③当d=6.5cm时,直线L与圆的位置关系是;

    (目的:直线和圆的位置关系的判定的应用)

    (3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L与⊙O至少有一个公共点,则d应满足的条件是()

    (A)d=3(B)d≤3(C)d3

    (目的:直线和圆的位置关系的性质的应用)

    (4)⊙O半径=3cm.点P在直线L上,若OP=5cm,则直线L与⊙O的位置关系是()

    (A)相离(B)相切(C)相交(D)相切或相交

    (目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维)

    想一想:

    在平面直角坐标系中有一点A(-3,-4),以点A为圆心,r长为半径时,

    思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况)

    六、作业:P100—2、3

    直线圆的位置关系教案模板


    授课时间:2004.11.17早上第二节授课班级:初三、1班授课教师:

    教学内容:7.7直线和圆的位置关系

    教学目标:

    知识与技能目标:1、理解直线和圆相交、相切、相离的概念。

    2.初步掌握直线和圆的位置关系的性质和判定及其灵活的应用。

    过程与方法目标:1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思

    想,培养学生观察、分析、概括、知识迁移的能力;

    2.通过例题教学,培养学生灵活运用知识的解决能力。

    情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

    教学重点:直线和圆的位置关系的判定方法和性质

    教学难点:直线和圆的三种位置关系的研究及运用

    教学程序设计:

    程序

    教师活动

    学生活动

    备注

    创设

    问题

    情景

    利用多媒体放映落日的动画。引导学生从公共点个数和圆心到直线的距离两方面体会直线和圆的不同位置关系。

    学生看投影并思考问题

    调动学生积极主动参与数学活动中.

    今天我们学习7.7直线和圆的位置关系。

    1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。

    2、观察圆心到直线的距离d与r的大小变化,类比点和圆的位置关系由圆半径和点与圆心的距离的数量关系来判定,总结得出直线与圆的位置关系由圆心到直线的距离与圆半径之间的数量关系来判定。得到直线和圆的位置关系的判定方法和性质。

    例1(课本第89页例)

    例2如图,正方形ABCD,边长

    为5,AC与BD交于点O,过点

    O作EF∥AB分别交AD、BC于

    点E、F。以A为圆心,为

    半径作圆,则⊙A与直线BD、EF、BC位置关系怎样,说明理由。

    学生观察、讨论、概括、总结后回答

    学生讨论试解看清条件与图形做出正确的判断

    问题的提出及解决,为深刻理解直线和圆的概念做好铺垫

    类比点和圆的位置关系来得到新知识

    从多个角度对所学知识加以运用

    反馈

    训练

    应用

    提高

    练习1:教材P.90中1,2.

    练习2:在Rt△ABC中,∠C=900,AC=3,AB=5,若以C为圆心、r为半径作圆,那么()

    (1)当直线AB与⊙C相切时,r的取值范围是

    (1)当直线AB与⊙C相离时,r的取值范围是

    (1)当直线AB与⊙C相交时,r的取值范围是

    学生在练习本上笔答,互相帮助、纠正

    培养了团结协作,相互交流的精神,也培养了学生正确的书写习惯

    小结

    提高

    直线和圆的位置关系:

    指导学生回答

    探究

    活动

    问题:如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数

    布置

    作业

    1、课本第101页7.3A组第2、3题

    2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。

    两圆的位置关系的教学方案


    课题:两圆的位置关系

    教学目的:掌握两圆的五种位置关系及判定方法;;

    教学重点:两圆的五种位置的判定.

    教学难点:知识的综合运用.

    教学过程:一,复习引入:

    请说出直线和圆的位置关系有哪几种?

    研究直线和圆的位置关系时,从两个角度来研究这种位置关系的,⑴直线和圆的公共点个数;⑵圆心到直线的距离d与半径r的大小关系,

    直线和圆的位置关系

    相离

    相切

    相交

    直线和圆的公共点个数

    0

    1

    2

    d与r的关系

    d>r

    d=r

    d

    二.讲解:圆和圆位置关系.

    ⑴两圆的公共点个数;

    ⑵圆心距d与两圆半径R、r的大小关系.

    两圆的位置关系

    外离

    外切

    相交

    内切

    内含

    两圆的交点个数

    0

    1

    2

    1

    0

    d与R、r的关系

    d>R+r

    d=R+r

    R-r

    d=R-r

    d

    定理设两个圆的半径为R和r,圆心距为d,则

    ⑴d>R+rÛ两圆外离;

    ⑵d=R+rÛ两圆外切;

    ⑶R-r

    ⑷d=R-r(R>r)Û两圆内切;

    ⑸dr)Û两圆内含.

    三.巩固:

    ⒈若两圆没有公共点,则两圆的位置关系是()

    (A)外离(B)相切(C)内含(D)相离

    ⒉若两圆只有一个交点,则两圆的位置关系是()

    (A)外切(B)内切(C)外切或内切(D)不确定

    ⒊已知:⊙O1和⊙O2的半径分别为3cm和4cm,根据下列条件判断⊙O1和⊙2的位置关系.

    ⑴O1O2=8cm;⑵O1O2=7cm;⑶O1O2=5cm;

    ⑷O1O2=1cm;⑸O1O2=0.5cm;⑹O1O2=0,即⊙O1和⊙O2重合;

    四作业:P1372.3.4.5

    【实用教案:《点与圆的位置关系》教学思考范文网页版】相关推荐
    五年级下学期班主任工作计划 优秀范文模板

    充分准备一份教案是一名优秀教师的职责所在,我们可以通过教案来进行更好的教学,每一位教师都要慎重考虑教案的设计,你是否在烦恼教案怎么写呢?可以看看本站收集的《五年级下学期班主任工作计划 优秀范文模板》,希望能够为您提供参考。五年级下学期班主任工作计划新的一学期又开始了,为了在新的学期里把工作做好,把我...

    2022春四年级班主任工作计划

    按照学校要求,教师都需要用到教案,教案在我们教师的教学中非常重要,做好教案对我们未来发展有着很重要的意义,如何才能写好教案呢?下面是小编特地为大家整理的“春四年级班主任工作计划”。20xx春四年级下学期班主任工作计划本学期我继续担任四年级的班主任,为了更好地开展工作,现拟订本学期班主任工作计划。一、...