俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是高中教师的任务之一。教案可以让学生能够在教学期间跟着互动起来,帮助高中教师提高自己的教学质量。那么,你知道高中教案要怎么写呢?以下是由小编为你整理的《指数【精】》,请收藏好,以便下次再读!
教学目标
1.理解分数的概念,掌握有理幂的运算性质.
(1)理解n次方根,n次根式的概念及其性质,能根据性质进行相应的根式计算.
(2)能认识到分数是概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数幂的互化.
(3)能利用有理运算性质简化根式运算.
2.通过范围的扩大,使学生能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力.
3.通过对根式与分数幂的关系的认识,使学生能学会透过表面去认清事物的本质.
教学建议
教材分析
(1)本节的教学重点是分数幂的概念及其运算性质.教学难点是根式的概念和分数幂的概念.
(2)由于分数幂的概念是借助次方根给出的,而次根式,次方根又是学生刚刚接触到的概念,也是比较陌生的.以此为基础去学习认识新知识自然是比较困难的.且次方根,分数幂的定义都是用抽象字母和符号的形式给出的,学生在接受理解上也是比较困难的.基于以上原因,根式和分数幂的概念成为本节应突破的难点.
(3)学习本节主要目的是将从整数推广到有理数,为函数的研究作好准备.且有理幂具备的运算性质还可以推广到无理幂,也就是说在运算上已将范围推广到了实数范围,为对数运算的出现作好了准备,而使这些成为可能的就是分数幂的引入.
教法建议
(1)根式概念的引入是本节教学的关键.为了让学生感到根式的学习是很自然也很必要的,不妨在设计时可以考虑以下几点:
①先以具体数字为例,复习正整数幂,介绍各部分的名称及运算的本质是乘方,让它与学生熟悉的运算联系起来,树立起转化的观点.
②当复习负幂时,由于与乘除共同有关,所以出现了分式,这样为分数幂的运算与根式相关作好准备.
③在引入根式时可先由学生知道的平方根和立方根入手,再大胆写出即谁的四次方根等于16.指出2和-2是它的四次方根后再把换成,写成即谁的次方等于,在语言描述的同时,也把数学的符号语言自然的给出.
(2)在次方根的定义中并没有将次方根符号化原因是结论的多样性,不能乱表示,所以需要先研究规律,再把它符号化.按这样的研究思路学生对次方根的认识逐层递进,直至找出运算上的规律.
教学设计示例
课题根式
教学目标:
1.理解次方根和次根式的概念及其性质,能根据性质进行简单的根式计算.
2.通过对根式的学习,使学生能进一步认清各种运算间的联系,提高归纳,概括的能力.
3.通过对根式的化简,使学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想.
教学重点难点:
重点是次方根的概念及其取值规律.
难点是次方根的概念及其运算根据的研究.
教学用具:投影仪
教学方法:启发探索式.
教学过程:
一.复习引入
今天我们将学习新的一节.与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展.
下面从我们熟悉的的复习开始.能举一个具体的运算的例子吗?
以为例,是运算要求学生指明各部分的名称,其中2称为底数,4为,称为幂.
教师还可引导学生回顾运算的由来,是从乘方而来,因此最初只能是正整数,同时引出正整数幂的定义..然后继续引导学生回忆零幂和负整数幂的定义,分别写出及,同时追问这里的由来.最后将三条放在一起,用投影仪打出整数幂的概念
2.5(板书)
1.关于整数幂的复习
(1)概念
既然是一种运算,除了定义之外,自然要给出它的运算规律,再来回顾一下关于整数幂的运算性质.可以找一个学生说出相应的运算性质,教师用投影仪依次打出:
(2)运算性质:;;.
复习后直接提出新课题,今天在此基础上把从整数范围推广到分数范围.在刚才的复习我们已经看到当在整数范围内时,运算最多也就是与分式有关,如果推广到分会与什么有关呢?应与根式有关.初中时虽然也学过一点根式,但不够用,因此有必要先从根式说起.
2.根式(板书)
我们知道根式来源于开方,开方是乘方的逆运算,所以谈根式还是先从大家熟悉的乘方说起.
如
如果给出了4和2进行运算,那就是乘方运算.如果是知道了16和2,求4即,求?
问题也就是:谁的平方是16,大家都能回答是4和-4,这就是开方运算,且4和-4有个名字叫16的平方根.
再如
知3和8,问题就是谁的立方是8?这就是开方运算,大家也知道结果为2,同时指出2叫做8的立方根.
(根据情况教师可再适当举几个例子,如,要求学生用语言描述式子的含义,I再说出结果分别为和-2,同时指出它们分别称为9的四次方根和-8的立方根)
在以上几个式子会解释的基础上,提出即一个数的次方等于,求这个数,即开次方,那么这个数叫做的次方根.
(1)次方根的定义:如果一个数的次方等于(,那么这个数叫做的次方根.
(板书)
对定义理解的第一步就是能把上述语言用数学符号表示,请同学们试试看.
由学生翻译为:若(,则叫做的次方根.(把它补在定义的后面)
翻译后教师在此基础上再次提出翻译的不够彻底,如结论中的的次方根就没有用符号表示,原因是什么?(如果学生不知从何入手,可引导学生回到刚才的几个例子,在符号表示上存在的问题,并一起研究解决的办法)最终把问题引向对的次方根的取值规律的研究.
(2)的次方根的取值规律:(板书)
先让学生看到的次方根的个数是由的奇偶性决定的,所以应对分奇偶情况讨论
当为奇数时,再问学生的次方根是个什么样的数,与谁有关,再提出对的正负的讨论,从而明确分类讨论的标准,按的正负分为三种情况.
Ⅰ当为奇数时
,的次方根为一个正数;
,的次方根为一个负数;
,的次方根为零.(板书)
当奇数情况讨论完之后,再用几个具体例子辅助说明为偶数时的结论,再由学生总结归纳
Ⅱ当为偶数时
,的次方根为两个互为相反数的数;
,的次方根不存在;
,的次方根为零.
对于这个规律的总结,还可以先看的正负,再分的奇偶,换个角度加深理解.
有了这个规律之后,就可以用准确的数学符号去描述次方根了.
(3)的次方根的符号表示(板书)
可由学生试说一说,若学生说不好,教师可与学生一起总结,当为奇数时,由于无论为何值,次方根都只有一个值,可用统一的符号表示,此时要求学生解释符号的含义:为正数,则为一个确定的正数,为负数,则为一个确定的负数,为零,则为零.
当为偶数时,为正数时,有两个值,而只能表示其中一个且应表示是正的,另一个应与它互为相反数,故只需在前面放一个负号,写成,其含义为为偶数时,正数的次方根有两个分别为和.
为了加深对符号的认识,还可以提出这样的问题:一定表示一个正数吗?中的一定是正数或非负数吗?让学生来回答,在回答中进一步认清符号的含义,再从另一个角度进行总结.对于符号,当为偶数是,它有意义的条件是;当为奇数时,它有意义的条件时.
把称为根式,其中为根,叫做被开方数.(板书)
(4)根式运算的依据(板书)
由于是个数值,数值自然要进行运算,运算就要有根据,因此下面有必要进一步研究根式运算的依据.但我们并不过分展开,只研究一些最基本的最简单的依据.
如应该得什么?有学生讲出理由,根据次方根的定义,可得Ⅰ=.(板书)
再问:应该得什么?也得吗?
若学生想不清楚,可用具体例子提示学生,如吗?吗?让学生能发现结果与有关,从而得到Ⅱ=.(板书)
为进一步熟悉这个运算依据,下面通过练习来体会一下.
三.巩固练习
例1.求值
(1).(2).
(3).(4).
(5).(
要求学生口答,并说出简要步骤.
四.小结
1.次方根与次根式的概念
2.二者的区别
3.运算依据
五.作业略
六.板书设计
2.5(2)取值规律(4)运算依据
1.复习
2.根式(3)符号表示例1
(1)定义
Jk251.coM编辑推荐
指数__万能通用篇
教学目标
1.理解分数的概念,掌握有理幂的运算性质.
(1)理解n次方根,n次根式的概念及其性质,能根据性质进行相应的根式计算.
(2)能认识到分数是概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数幂的互化.
(3)能利用有理运算性质简化根式运算.
2.通过范围的扩大,使学生能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力.
3.通过对根式与分数幂的关系的认识,使学生能学会透过表面去认清事物的本质.
教学建议
教材分析
(1)本节的教学重点是分数幂的概念及其运算性质.教学难点是根式的概念和分数幂的概念.
(2)由于分数幂的概念是借助次方根给出的,而次根式,次方根又是学生刚刚接触到的概念,也是比较陌生的.以此为基础去学习认识新知识自然是比较困难的.且次方根,分数幂的定义都是用抽象字母和符号的形式给出的,学生在接受理解上也是比较困难的.基于以上原因,根式和分数幂的概念成为本节应突破的难点.
(3)学习本节主要目的是将从整数推广到有理数,为函数的研究作好准备.且有理幂具备的运算性质还可以推广到无理幂,也就是说在运算上已将范围推广到了实数范围,为对数运算的出现作好了准备,而使这些成为可能的就是分数幂的引入.
教法建议
(1)根式概念的引入是本节教学的关键.为了让学生感到根式的学习是很自然也很必要的,不妨在设计时可以考虑以下几点:
①先以具体数字为例,复习正整数幂,介绍各部分的名称及运算的本质是乘方,让它与学生熟悉的运算联系起来,树立起转化的观点.
②当复习负幂时,由于与乘除共同有关,所以出现了分式,这样为分数幂的运算与根式相关作好准备.
③在引入根式时可先由学生知道的平方根和立方根入手,再大胆写出即谁的四次方根等于16.指出2和-2是它的四次方根后再把换成,写成即谁的次方等于,在语言描述的同时,也把数学的符号语言自然的给出.
(2)在次方根的定义中并没有将次方根符号化原因是结论的多样性,不能乱表示,所以需要先研究规律,再把它符号化.按这样的研究思路学生对次方根的认识逐层递进,直至找出运算上的规律.
教学设计示例
课题根式
教学目标:
1.理解次方根和次根式的概念及其性质,能根据性质进行简单的根式计算.
2.通过对根式的学习,使学生能进一步认清各种运算间的联系,提高归纳,概括的能力.
3.通过对根式的化简,使学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想.
教学重点难点:
重点是次方根的概念及其取值规律.
难点是次方根的概念及其运算根据的研究.
教学用具:投影仪
教学方法:启发探索式.
教学过程:
一.复习引入
今天我们将学习新的一节.与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展.
下面从我们熟悉的的复习开始.能举一个具体的运算的例子吗?
以为例,是运算要求学生指明各部分的名称,其中2称为底数,4为,称为幂.
教师还可引导学生回顾运算的由来,是从乘方而来,因此最初只能是正整数,同时引出正整数幂的定义..然后继续引导学生回忆零幂和负整数幂的定义,分别写出及,同时追问这里的由来.最后将三条放在一起,用投影仪打出整数幂的概念
2.5(板书)
1.关于整数幂的复习
(1)概念
既然是一种运算,除了定义之外,自然要给出它的运算规律,再来回顾一下关于整数幂的运算性质.可以找一个学生说出相应的运算性质,教师用投影仪依次打出:
(2)运算性质:;;.
复习后直接提出新课题,今天在此基础上把从整数范围推广到分数范围.在刚才的复习我们已经看到当在整数范围内时,运算最多也就是与分式有关,如果推广到分会与什么有关呢?应与根式有关.初中时虽然也学过一点根式,但不够用,因此有必要先从根式说起.
2.根式(板书)
我们知道根式来源于开方,开方是乘方的逆运算,所以谈根式还是先从大家熟悉的乘方说起.
如
如果给出了4和2进行运算,那就是乘方运算.如果是知道了16和2,求4即,求?
问题也就是:谁的平方是16,大家都能回答是4和-4,这就是开方运算,且4和-4有个名字叫16的平方根.
再如
知3和8,问题就是谁的立方是8?这就是开方运算,大家也知道结果为2,同时指出2叫做8的立方根.
(根据情况教师可再适当举几个例子,如,要求学生用语言描述式子的含义,I再说出结果分别为和-2,同时指出它们分别称为9的四次方根和-8的立方根)
在以上几个式子会解释的基础上,提出即一个数的次方等于,求这个数,即开次方,那么这个数叫做的次方根.
(1)次方根的定义:如果一个数的次方等于(,那么这个数叫做的次方根.
(板书)
对定义理解的第一步就是能把上述语言用数学符号表示,请同学们试试看.
由学生翻译为:若(,则叫做的次方根.(把它补在定义的后面)
翻译后教师在此基础上再次提出翻译的不够彻底,如结论中的的次方根就没有用符号表示,原因是什么?(如果学生不知从何入手,可引导学生回到刚才的几个例子,在符号表示上存在的问题,并一起研究解决的办法)最终把问题引向对的次方根的取值规律的研究.
(2)的次方根的取值规律:(板书)
先让学生看到的次方根的个数是由的奇偶性决定的,所以应对分奇偶情况讨论
当为奇数时,再问学生的次方根是个什么样的数,与谁有关,再提出对的正负的讨论,从而明确分类讨论的标准,按的正负分为三种情况.
Ⅰ当为奇数时
,的次方根为一个正数;
,的次方根为一个负数;
,的次方根为零.(板书)
当奇数情况讨论完之后,再用几个具体例子辅助说明为偶数时的结论,再由学生总结归纳
Ⅱ当为偶数时
,的次方根为两个互为相反数的数;
,的次方根不存在;
,的次方根为零.
对于这个规律的总结,还可以先看的正负,再分的奇偶,换个角度加深理解.
有了这个规律之后,就可以用准确的数学符号去描述次方根了.
(3)的次方根的符号表示(板书)
可由学生试说一说,若学生说不好,教师可与学生一起总结,当为奇数时,由于无论为何值,次方根都只有一个值,可用统一的符号表示,此时要求学生解释符号的含义:为正数,则为一个确定的正数,为负数,则为一个确定的负数,为零,则为零.
当为偶数时,为正数时,有两个值,而只能表示其中一个且应表示是正的,另一个应与它互为相反数,故只需在前面放一个负号,写成,其含义为为偶数时,正数的次方根有两个分别为和.
为了加深对符号的认识,还可以提出这样的问题:一定表示一个正数吗?中的一定是正数或非负数吗?让学生来回答,在回答中进一步认清符号的含义,再从另一个角度进行总结.对于符号,当为偶数是,它有意义的条件是;当为奇数时,它有意义的条件时.
把称为根式,其中为根,叫做被开方数.(板书)
(4)根式运算的依据(板书)
由于是个数值,数值自然要进行运算,运算就要有根据,因此下面有必要进一步研究根式运算的依据.但我们并不过分展开,只研究一些最基本的最简单的依据.
如应该得什么?有学生讲出理由,根据次方根的定义,可得Ⅰ=.(板书)
再问:应该得什么?也得吗?
若学生想不清楚,可用具体例子提示学生,如吗?吗?让学生能发现结果与有关,从而得到Ⅱ=.(板书)
为进一步熟悉这个运算依据,下面通过练习来体会一下.
三.巩固练习
例1.求值
(1).(2).
(3).(4).
(5).(
要求学生口答,并说出简要步骤.
四.小结
1.次方根与次根式的概念
2.二者的区别
3.运算依据
五.作业略
六.板书设计
2.5(2)取值规律(4)运算依据
1.复习
2.根式(3)符号表示例1
(1)定义
指数函数、函数奇偶性
指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
如图所示为a的不同大小影响函数图形的情况。
可以看到:
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于x轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性
注图:(1)为奇函数(2)为偶函数
1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
3.奇偶函数运算
(1).两个偶函数相加所得的和为偶函数.
(2).两个奇函数相加所得的和为奇函数.
(3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
(4).两个偶函数相乘所得的积为偶函数.
(5).两个奇函数相乘所得的积为偶函数.
(6).一个偶函数与一个奇函数相乘所得的积为奇函数.
棱【精】
教学目标
知识目标
1、了解棱镜在改变光的传播方向上的作用,知道棱镜是利用光的折射定律控制光路的光学元件一.
2、理解全反射棱镜产生全反射的原理,知道全反射棱镜的应用.
3、知道各种色光在真空中的速度相同,在其他介质中速度不同,因而对同一介质的折射率不同.
4、知道色散现象产生的原因,知道红光的折射率最小,紫光的折射率最大.
能力目标
理解棱镜对光的偏折作用,对实际问题进行处理.
理解不同色光通过棱镜的色散现象,分析相关现象.
情感目标
1、对比全反射棱镜和平面镜对光路的控制作用的不同效果,让学生学会选择更合理的工具来解决问题.
2、由光的色散现象这一知识点,启发学生思考不同的色光叠加的效果.
教学建议
1、要让学生会根据折射定律定性画出通过棱镜的光线、能够通过作图体会棱镜控制光法的特点:“光线向底而偏折”、要正确地、灵活地找到顶角和底面.
2、要让学生知道全反射棱镜控制光路的特点、并让学生了解全反射棱镜与平面饼在改变光路上效果是相同的,但利用平面镜反射时,玻璃表面和镀层表面都要产生反射,并在镀层面会有一定的光能被吸收、所以实际中全反射棱镜优于平面镜.
3、关于光的色散现象可以先通过演示实验,如让白光通过三棱镜在屏上或白墙上观察到彩色的光带而看到色散现象,再通过分析说明各种颜色的光偏向角不同反映了玻璃对各种色光的折射率不同,从而得出不同颜色的光在玻璃中的传播速度不同.
教学设计示例
棱镜
(-)引入新课
根据光的折射现象以及光的可逆性原理分析光线通过三棱镜后将发生偏折现象,并通过演示实验观察光路(利用激光演示器).做好演示实验:光通过三棱镜后的光路(尽量演示各种可能出现的情况)
(二)教学过程
1、介绍三棱镜
棱镜:光学上用核截面为三角形的透明体叫做三棱镜,光密媒质的棱镜放在光疏媒质中(通常在空气中),入射到棱镜侧面的光线经棱镜折射后向棱镜底面偏折.
A、三棱镜是利用光的折射控制光路的光学元件.隔着三棱镜能看到物体的虚像.虚像的位置比物体的实际位置向顶角方向偏移,但是没有必要去追究是放大还是缩小的像.
B、光从棱镜的一个侧面射入,从另一个侧面射出,出射光线将向底面(第三个侧面)偏折,偏折角的大小与棱镜的折射率,棱镜的顶角和入射角有关.
C、若三棱镜的介质相对于周围介质是光流介质,则透过棱镜看物体,看到的虚像向底边偏移;出射光线较之入射光线向顶角偏折.
2、全反射棱镜
截面为等腰直角三角形的棱镜叫全反射棱镜.全反射棱镜在光学仪器中被用来改变光路.
A、玻璃的折射率在1、5~1、9之间,相对于空气来讲,玻璃的临界角在30°~42°之间.
B、光从空气垂直射入全反射棱镜的直角侧面上,经过棱镜一次全反射,将改变光路90°,光垂直射入全反射棱镜的斜侧面上,经棱镜两次全反射,将改变光路180°.
3、光的色散
白光通过三棱镜折射后被分解为由红,橙,黄,绿,蓝,靛,紫组成的彩色光谱,这就是光的色散.
A、光的色散现象表明:白光是由各种单色光组成的复色光;同一种介质对不同色光的折射率不同;不同色光在同一介质中传播的速度不同.
B、复色光通过平行透明板(玻璃砖),也能发生色散现象.
探究活动
1、利用三棱镜自制潜望镜.并与利用平面镜制作的潜望镜进行效果对比.
2、动手做一做光的色散实验,看看会有什么现象?
排列【精】
教学目标
(1)正确理解的意义。能利用树形图写出简单问题的所有;
(2)了解和数的意义,能根据具体的问题,写出符合要求的;
(3)掌握数公式,并能根据具体的问题,写出符合要求的数;
(4)会分析与数字有关的问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是的定义、数及数的公式,并运用这个公式去解决有关数的应用问题.难点是导出数的公式和解有关的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决应用问题当中.
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个.因此,两个相同,当且仅当他们的元素完全相同,并且元素的顺序也完全相同.数是指从n个不同元素中任取m(m≤n)个元素的所有不同的种数,只要弄清相同、不同,才有可能计算相应的数.与数是两个概念,前者是具有m个元素的,后者是这种的不同种数.从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个,而这种有序集的个数,就是相应的数.
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好的推导.
的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.
在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.
在教学应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.
三、教法建议
①在讲解数的概念时,要注意区分“数”与“一个”这两个概念.一个是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;数是指“从n个不同元素中取出m个元素的所有的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab,ac,ba,bc,ca,cb,
其中每一种都叫一个,共有6种,而数字6就是数,符号表示数.
②的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序”.
从定义知,只有当元素完全相同,并且元素的顺序也完全相同时,才是同一个,元素完全不同,或元素部分相同或元素完全相同而顺序不同的,都不是同一。叫不同.
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.
在的定义中,如果有的书上叫选,如果,此时叫全.
要特别注意,不加特殊说明,本章不研究重复问题.
③关于数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导,,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.
导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是,共m个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.
公式是在引出全数公式后,将数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的数的值,常用前一个公式,而要对含有字母的数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释.
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.
⑤学生在开始做应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.
教学设计示例
教学目标
(1)正确理解的意义。能利用树形图写出简单问题的所有;
(2)了解和数的意义,能根据具体的问题,写出符合要求的;
(3)会分析与数字有关的问题,培养学生的抽象能力和逻辑思维能力;
教学重点难点
重点是的定义、数并运用这个公式去解决有关数的应用问题。
难点是解有关的应用题。
教学过程设计
一、复习引入
上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):
1.书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书.
(1)从中任取1本,有多少种取法?
(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?
2.某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?
找一同学谈解答并说明怎样思考的的过程
第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是:50×40=2000.
第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区.
二、讲授新课
学习了两个基本原理之后,现在我们继续学习问题,这是我们本节讨论的重点.先从实例入手:
1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?
由学生设计好方案并回答.
(1)用加法原理设计方案.
首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票.
(2)用乘法原理设计方案.
首先确定起点站,在三个站中,任选一个站为起点站,有3种方法.即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选.那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序不同方法共有3×2=6种.
根据以上分析由学生(板演)写出所有种飞机票
再看一个实例.
在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?
找学生谈自己对这个问题的想法.
事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数.
首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;
其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.
根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).
根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况)
第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来.
由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数.
根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).
请板演的学生谈谈怎样想的?
第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种取法.
第二步,确定十位上的数字.当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法.
第三步,确定个位上的数字.当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法.
根据乘法原理,所以共有4×3×2=24种.
下面由教师提问,学生回答下列问题
(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?
都是从一些研究的对象之中取出某些研究的对象.
(2)取出的这些研究对象又做些什么?
实质上按着顺序排成一排,交换不同的位置就是不同的情况.
(3)请大家看书,第×页、第×行.我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素.
上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法.
第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法.
第三个问题呢?
从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法.
给出定义
请看课本,第×页,第×行.一般地说,从n个不同的元素中,任取m(m≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个.
下面由教师提问,学生回答下列问题
(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的?什么是不同的?
从的定义知道,如果两个相同,不仅这两个的元素必须完全相同,而且的顺序(即元素所在的位置)也必须相同.两个条件中,只要有一个条件不符合,就是不同的.
如第一个问题中,北京—广州,上海—广州是两个,第三个问题中,213与423也是两个.
再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但顺序不同,也是两个.
(2)还需要搞清楚一个问题,“一个”是不是一个数?
生:“一个”不应当是一个数,而应当指一件具体的事.如飞机票“北京—广州”是一个,“红黄绿”是一种信号,也是一个.如果问飞机票有多少种?能表示出多少种信号.只问种数,不用把所有情况罗列出来,才是一个数.前面提到的第三个问题,实质上也是这样的.
三、课堂练习
大家思考,下面的问题怎样解?
有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)
分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的问题.
解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱.
第二步从余下的三张卡片中任选符合条件的一张放在第2空箱.
第三步从余下的两张卡片中任选符合条件的一张放在第3空箱.
第四步把最后符合条件的一张放在第四空箱.具体排法,用下面图表表示:
所以,共有9种放法.
四、作业
课本:P232练习1,2,3,4,5,6,7.