小学数学教案应用题。
大家对教案都很熟悉了吧,多写教案能够提升我们的策划能力,做好教案对我们未来发展有着很重要的意义,你是否在烦恼教案怎么写呢?小编为你推荐《教案范文: 两步应用题教学设计精选一篇》,希望您喜欢。
教学目标:
1、加强一步与两步应用题的比较,弄清它们之间的联系与区别。
2、联系生活实际,加强应用题思路训练,培养思维能力。
3、进一步培养学生解决简单实际问题的能力。
教学重点:
应用题的思路训练。
教学难点:
合理选择条件能力的培养。
教具准备:
课件
教学过程:
一、创设情境,引出问题
同学们,想和王老师交朋友吗?谁愿意把自己介绍给大家。(生介绍)你想了解老师的情况吗?想知道哪些呢?(生:想知道老师今年多少岁)请你猜猜老师今年多少岁?(生猜,学生情绪高涨)老师今年到底多少岁呢?请同学们动脑筋想一想。
王涛同学今年10岁,王老师的年龄比王涛大17岁,王老师今年多少岁?
二、变化形式,针对练习
1、创设情境,激发兴趣
王涛同学今年10岁,王老师今年27岁,张老师今年多少岁?
请同学们拿出自备本算一算,(老师装作若无其事)学生开始计算。jk251.cOM
很多学生开始议论,觉得题目有些问题,有的学生已经算好了(用10+27)
师:为什么不能计算呢?缺少了一个怎样的条件?(生:缺少了一个与张老师年龄有联系的条件)谁愿意来补一个这样的条件?
2、学生补条件(根据学生的提问,电脑逐步显示)
张老师的年龄比王涛大x岁。
张老师的年龄是王涛的x倍。
张老师的年龄比王老师大x岁。
张老师的年龄比王老师小x岁。
张老师的年龄是王老师的x倍。
(根据学生补充的条件直接口答,教师板书算式)
张老师的年龄比王涛和王老师年龄总和大x岁。
张老师的年龄比王涛和王老师年龄总和小x岁。
张老师的年龄是王涛和王老师年龄总和的x倍。
(你有胆量试试吗?学生试做第(1)题)
3、尝试解答
4、交流想法
说说你是先求什么?再求什么?你怎么想到要先求王涛和王老师年龄总和的?(学生相互说说)
你还有其它想法吗?(求张老师今年几岁?张老师年龄与谁有联系?)
比较两种思路。(小组交流)
选择自己喜欢的思路解答余下的两题。
学生交流自己的思路。
比较刚才3题,解题方法上相同的地方是什么?(为什么都要先求王老师的年龄)
5、加强比较
6、为什么前面几题只需一步计算,而刚才的几题需两步计算呢?(小组讨论,突出一步应用题与两步应用题的比较)
三、加强联系,综合练习
1、出示题目,让学生选择条件做一做。
华南实验学校三年级同学参加英语兴趣小组的有15人,参加科技兴趣小组的有20人,参加电脑兴趣小组的多少人?
(1)电脑组的人数是英语组的3倍
(2)科技组的人数比电脑组少25人
(3)电脑组的人数比科技组和英语组的总数多10人
(4)电脑组的人数比科技组的2倍多5人
(5)电脑组的人数比科技组的3倍少5人
(6)文艺组的人数比英语组和科技组的总数少5人。
2、学生说说思路
3、比较它们之间的异同
四、课堂小结
今天你这节课有什么收获?
总评:新课导入从学生与老师的谈话交流中生成数学问题,以学生熟悉的年龄问题展开讨论,能激发学生的学习兴趣,引出所要探索的问题。在展开阶段,能通过创设矛盾冲突,让学生自己来补条件,既发挥了学生的主体意识,又体现了教学的开放性,满足了不同层次学生的学习需求,使学生能多角度、多侧面的考虑问题。练习题的选材能充分联系学校、社会实际,使学生运用所学的方法解决身边的实际问题。在整个教学过程,通过学生补条件、选条件,突出了应用题的思路训练,加强了一步应用题与两步应用题的比较,有效提高学生分析、解决简单实际问题的能力。
jk251.coM小编推荐
应用题
一、倍分关系
1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
2、已知甲数是乙数的少5,甲数比乙数大65,求乙数。
3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。
二、百分比问题:
1、某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的利率。
2、某商品降价12%后的售价为176元,求该商品的原价。
3、受季节影响,一个月内,某商品涨价10%后有下跌了10%,现在售价297元,求该商品原价。
三、物资分配:
1、一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量。
2、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问,春游的总人数是多少?
四、比例问题:
1、某一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?
2、图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
3、某人将2600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1:3:5:4,请问此人打算休闲娱乐花去多少元?
五、调配问题:
1、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。
2、某厂甲车间有工人32人,乙车间有62人,现在从厂外有招聘新工人98名分配到两个车间,问应该如何分配才能使二车间的人数是一车间人数的3倍。
六、数字问题:
1、三个连续偶数的和是360,求这三个偶数。
2、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数。
3、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。
七、几何问题:
1、将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。
2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?
应用题教案模板
应用题训练(二)
一、倍分关系
1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
2、已知甲数是乙数的少5,甲数比乙数大65,求乙数。
3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。
二、百分比问题:
1、某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的利率。
2、某商品降价12%后的售价为176元,求该商品的原价。
3、受季节影响,一个月内,某商品涨价10%后有下跌了10%,现在售价297元,求该商品原价。
三、物资分配:
1、一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量。
2、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问,春游的总人数是多少?
四、比例问题:
1、某一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?
2、图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
3、某人将2600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1:3:5:4,请问此人打算休闲娱乐花去多少元?
五、调配问题:
1、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。
2、某厂甲车间有工人32人,乙车间有62人,现在从厂外有招聘新工人98名分配到两个车间,问应该如何分配才能使二车间的人数是一车间人数的3倍。
六、数字问题:
1、三个连续偶数的和是360,求这三个偶数。
2、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数。
3、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。
七、几何问题:
1、将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。
2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?
应用题训练(二)
一、倍分关系
1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
2、已知甲数是乙数的少5,甲数比乙数大65,求乙数。
3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。
二、百分比问题:
1、某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的利率。
2、某商品降价12%后的售价为176元,求该商品的原价。
3、受季节影响,一个月内,某商品涨价10%后有下跌了10%,现在售价297元,求该商品原价。
三、物资分配:
1、一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量。
2、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问,春游的总人数是多少?
四、比例问题:
1、某一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?
2、图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
3、某人将2600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1:3:5:4,请问此人打算休闲娱乐花去多少元?
五、调配问题:
1、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。
2、某厂甲车间有工人32人,乙车间有62人,现在从厂外有招聘新工人98名分配到两个车间,问应该如何分配才能使二车间的人数是一车间人数的3倍。
六、数字问题:
1、三个连续偶数的和是360,求这三个偶数。
2、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数。
3、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。
七、几何问题:
1、将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。
2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?