你的位置:
  • 范文大全
  • >教案
  • >导航
  • >月度教案精选 《分数的基本性质》教学思考其八
  • 月度教案精选 《分数的基本性质》教学思考其八

    发表时间:2022-07-25

    分式的基本性质。

    随着教师工作的不断熟练,我们需要撰写教案,我们可以通过教案来进行更好的教学,做好教案对我们未来发展有着很重要的意义,教案该怎么写?本站收集整理了一些“月度教案精选 《分数的基本性质》教学思考其八”,欢迎大家阅读,希望对大家有所帮助。

    《分数的基本性质》是人教版小学五年级下册数学教材第的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习通分、约分、比的基本性质的基础,而通分、约分又是分数计算的基础,因此,理解分数的基本性质显得尤为重要。本节课与传统的概念教学相比,有很大的改进,体现了新的教学理念,主要表现在以下几个方面:

    一、教师角色的把握非常准确。

    《数学课程标准》指出:“教师是数学学习的组织者、引导者与合作者。”在本节课中,王老师很好的为我们诠释了这句话。王老师为学生提供了有趣的故事情境以及大量的数学素材,让学生去观察、感悟,及时精辟的启发点拨,加上极具亲和力的自然交流。这些都体面了教师是数学学习的组织者、引导者与合作者。从中也看出王老师那种超强的课堂驾驭能力。

    二、构建自主探究、小组合作的课堂教学模式。

    兴趣的是最好的老师,王老师充分的利用这一点,以一个精彩的智力故事:和尚分饼引入新课,直接为教学服务,给人以开门见山的感觉,给学生制造悬念,并引导学生自主探究、小组合作交流,在变与不变中发现规律、总结规律。

    三、练习的设计颇具匠心。

    在练习这一环节,王老师精心设计了由浅入深的题目,既巩固了新知有发展了学生的能力。

    不管多么完美的课堂,总会留有小小的遗憾,这也是我们不断探究的动力。在本节课中王老师出示第二组分数时,如果让学生动手操作,既锻炼了学生的能力,又可从中感知分数的基本性质。

    jk251.coM小编推荐

    比的基本性质 优秀小学教案 教案精选


    比的基本性质

    教学目的:

    1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

    2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

    3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。

    教学重点:理解比的基本性质,掌握化简比的方法

    教学难点:化简比与求比值0的不同

    教学过程:

    一、复习。

    1、什么叫做比?比的各部分名称是什么?

    2、比与除法和分数有什么关系?

    前项

    :(比号)

    后项

    比值

    除法

    被除数

    ÷(除号)

    除数

    分数

    分子

    -(分数线)

    分母

    分数值

    6÷2

    8÷2

    3、除法中的商不变规律是什么?举例:6÷8=(6×2)÷(8×2)=12÷16

    4、分数的基本性质是什么?举例:==

    二、新授

    1、猜测比的性质:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)

    2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。

    6÷8=(6×2)÷(8×2)=12÷16

    6:8=(6×2)∶(8×2)=12:16

    6:8=(6÷2)∶(8÷2)=3:4

    6÷8=(6÷2)÷(8÷2)=3÷4

    3、小组派代表说明验证过程,其他同学补充说明。

    4、正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

    5、教学例1

    (1)出示例题:把下面各比化成最简单的整数比

    15∶10∶0.75∶2

    (2)引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的)

    (3)指名学生说出自己化简的方法,全班评判。

    三、练习

    1、p46“做一做”

    2、练习十一第2题(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”)

    四、总结

    今天我们学习了什么知识?比的基本性质可以应用在哪些方面?

    教学追记:

    本堂课,是一节充分体现以学生为主的课。教学中,,由除法的“商不变性质”和“分数的基本性质“就能自然而然的联想到是否也存在着“比的基本性”。对此,我没有束缚学生的思维,而是顺从学生的思维规律,鼓励他们大胆猜想,并通过举例、论证等方法小心验证,最后确切地得出了“比的基本性质”。在“大胆猜想——小心验证——得出结论”这一过程中,我尽量地放手给学生,让学生自主课堂,步步深入,而教师只在关键处起点拨作用。这样,整堂课的教学,学生的学习兴趣浓,积极性高,成就感足,理解和记忆也就自然较为深刻。

    不等式它的基本性质


    一、素质教育目标

    (一)知识教学点

    1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.

    2.灵活运用不等式的基本性质进行不等式形.

    (二)能力训练点

    培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.

    (三)德育渗透点

    培养学生积极主动的参与意识和勇敢尝试、探索的精神.

    (四)美育渗透点

    通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

    二、学法引导

    1.教学方法:观察法、探究法、尝试指导法、讨论法.

    2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.

    三、重点·难点·疑点及解决办法

    (一)重点

    掌握不等式的三条基本性质,尤其是不等式的基本性质3.

    (二)难点

    正确应用不等式的三条基本性质进行不等式变形.

    (三)疑点

    弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.

    (四)解决办法

    讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.

    四、课时安排

    一课时

    五、教具学具准备

    投影仪或电脑、自制胶片.

    六、师生互动活动设计

    1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.

    2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.

    3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.

    七、教学步骤

    (-)明确目标

    本节课主要学习不等式的三条基本性质并能熟练地加以应用.

    (二)整体感知

    通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.

    (三)教学过程

    1.创设情境,复习引入

    什么是等式?等式的基本性质是什么?

    学生活动:独立思考,指名回答.

    教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.

    请同学们继续观察习题:

    (1)用“>”或“<”填空.

    ①7+3____4+3②7+(-3)____4+(-3)

    ③7×3____4×3④7×(-3)____4×(-3)

    (2)上述不等式中哪题的不等号与7>4一致?

    学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.

    【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.

    不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.

    学生活动:观察思考,猜想出不等式的性质.

    教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”

    师生活动:师生共同叙述不等式的性质,同时教师板书.

    不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.

    对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?

    学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.

    【教法说明】观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?

    师生活动:由学生概括总结不等式的其他性质,同时教师板书.

    不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.

    不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变.

    师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.

    学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.

    强调:要特别注意不等式基本性质3.

    实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.

    不等式的基本性质与等式的基本性质有哪些区别、联系?

    学生活动:思考、同桌讨论.

    归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.

    ①若,则,;

    ②若,且,则,;

    ③若,且,则,.

    师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.

    注意:不等式除了上述性质外,还有以下性质:①若,则.②若,且,则,这些先不要向学生说明.

    2.尝试反馈,巩固知识

    请学生先根据自己的理解,解答下面习题.

    例1根据不等式的基本性质,把下列不等式化成或的形式.

    (1)(2)(3)(4)

    学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.

    教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.

    解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.

    所以

    (2)根据不等式基本性质1,两边都减去,得

    (3)根据不等式基本性质2,两边都乘以2,得

    (4)根据不等式基本性质3,两边都除以-4得

    【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.

    例2设,用“<”或“>”填空.

    (1)(2)(3)

    学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.

    解:(1)因为,两边都减去3,由不等式性质1,得

    (2)因为,且2>0,由不等式性质2,得

    (3)因为,且-4<0,由不等式性质3,得

    教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.

    注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

    【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.

    3.变式训练,培养能力

    (1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)

    ①∵∴()②∵∴()

    ③∵∴()④∵∴()

    ⑤∵∴⑥∵∴()

    学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.

    答案:

    ①(A)②(B)

    ③(C)④(C)

    ⑤(C)⑥(A)

    【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.

    (2)单项选择:

    ①由得到的条件是()

    A.B.C.D.

    ②由由得到的条件是()

    A.B.C.D.

    ③由得到的条件是()

    A.B.C.D.是任意有理数

    ④若,则下列各式中错误的是()

    A.B.C.D.

    师生活动:教师选出答案,学生判断正误并说明理由.

    答案:①A②D③C④D

    (3)判断正误,正确的打“√”,错误的打“×”

    ①∵∴()②∵∴()

    ③∵∴()④若,则∴,()

    学生活动:一名学生说出答案,其他学生判断正误.

    答案:①√②×③√④×

    【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.

    (四)总结、扩展

    1.本节重点:

    (1)掌握不等式的三条基本性质,尤其是性质3.

    (2)能正确应用性质对不等式进行变形.

    2.注意事项:

    (1)要反复对比不等式性质与等式性质的异同点.

    (2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.

    3.考点剖析:

    不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.

    八、布置作业

    (一)必做题:P61A组4,5.

    (二)选做题:P62B组1,2,3.

    参考答案

    (一)4.(1)(2)(3)(4)

    5.(1)(2)(3)(4)

    (5)(6)

    (二)1.(1)(2)(3)

    2.(1)(2)(3)(4)

    3.(1)(2)(3)

    九、板书设计

    6.1不等式和它的基本性质(二)

    一、不等式的基本性质

    1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.

    若,则,.

    2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若,,则.

    3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若,,则.

    二、应用

    例1解(1)(2)

    (3)(4)

    例2解(1)(2)

    (3)

    三、小结

    注意不等式性质3的应用.

    十、背景知识与课外阅读

    盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?

    数学教案-分式的基本性质教案模板


    第一课时

    (一)教学过程

    【复习提问】

    1.分式的定义?

    2.分数的基本性质?有什么用途?

    【新课】

    1.类比分数的基本性质,由学生小结出分式的基本性质:

    分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:

    (其中是不等于零的整式.)

    2.加深对分式基本性质的理解:

    例1下列等式的右边是怎样从左边得到的?

    (1);

    由学生口述分析,并反问:为什么?

    解:∵

    ∴.

    (2);

    学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件.)

    解:∵

    ∴.

    (3)

    学生口答.

    解:∵,

    ∴.

    例2填空:

    (1);

    (2);

    (3);

    (4).

    把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.

    例3不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.

    (1);

    分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?

    解:.

    (2).

    解:.

    例4判断取何值时,等式成立?

    学生分组讨论后得出结果:

    ∴.

    (二)随堂练习

    1.当为何值时,与的值相等()

    A.B.C.D.

    2.若分式有意义,则,满足条件为()

    A.B.C.D.以上答案都不对

    3.下列各式不正确的是()

    A.B.

    C.D.

    4.若把分式的和都扩大两倍,则分式的值

    A.扩大两倍B.不变

    C.缩小两倍D.缩小四倍

    (三)总结、扩展

    1.分式的基本性质.

    2.性质中的可代表任何非零整式.

    3.注意挖掘题目中的隐含条件.

    4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件.

    (四)布置作业

    教材P61中2、3;P62中B组的1

    (五)板书设计

    经典初中教案不等式它的基本性质


    教学建议

    一、知识结构

    二、重点、难点分析

    本节教学的重点是不等式的三条基本性质.难点是不等式的基本性质3.掌握不等式的三条基本性质是进一步学习一元一次不等式(组)的解法等后续知识的基础.

    1.不等式的概念

    用不等号(“<”、“>”或“≠”表示不等关系的式子,叫做不等式.

    另外,(“≥”是把“>”、“=”)结合起来,读作“大于或等于”,或记作“≮”,亦即“不小于”)、(“≤”是把“<”、“=”结合起来,读作“小于或等于”,或记作“≯”,也就是“不大于”)等等,也都是不等式.

    2.当不等式的两边都加上或乘以同一个正数或负数时,所得结果仍是不等式.但变形所得的不等式中不等号的方向,有的与原不等式中不等号的方向相同,有的则不相同.因而叙述时不能笼统说成“……仍是不等式”,而应明确变形所得的不等式中不等号的方向.

    3.不等式成立与不等式不成立的意义

    例如:在不等式中,字母表示未知数.当取某一数值时,的值小于2,我们就说当时,不等式成立;当取另外某一个数值时,的值不小于2,我们就说当时,不等式不成立.

    4.不等式的三条基本性质是不等式变形的重要依据,性质1、2类似等式性质,不等号的方向不改变,性质3不等号的方向改变,这是不等式独有的性质,也是初学者易错的地方,因此要特别注意.

    一、素质教育目标

    (-)知识教学点

    1.了解不等式的意义.

    2.理解什么是不等式成立,掌握不等式是否成立的判定方法.

    3.能依题意准确迅速地列出相应的不等式.

    (二)能力训练点

    1.培养学生运用类比方法研究相关内容的能力.

    2.训练学生运用所学知识解决实际问题的能力.

    (三)德育渗透点

    通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识.

    (四)美育渗透点

    通过不等式的学习,渗透具有不等量关系的数学美.

    二、学法引导

    1.教学方法:观察法、引导发现法、讨论法.

    2.学生学法:只有准确理解不等号的几种形式的意义,才能在实际中进行灵活的运用.

    三、重点·难点·疑点及解决办法

    (一)重点

    掌握不等式是否成立的判定方法;依题意列出正确的不等式.

    (二)难点

    依题意列出正确的不等式

    (三)疑点

    如何把题目中表示不等关系的词语准确地翻译成相应的数学符号.

    (四)解决方法

    在正确理解不等号的意义后,通过抓住体现不等量的关系的词语就能准确列出相应的不等式.

    四、课时安排

    一课时.

    五、教具学具准备

    投影仪或电脑、自制胶片.

    六、师生互动活动设计

    1.创设情境,通过复习有关等式的知识,自然导入新课的学习,激发学生的学习热情.

    2.从演示的有关实验中,探究相应的不等量关系,从学生的讨论、分析中探究代数式的不等关系的几种常见形式.

    3.从师生的互动讲解练习中掌握不等式的有关知识,并培养学生具有一定的灵活应用能力.

    七、教学步骤

    (一)明确目标

    本节课主要学习依题意正确迅速地列出不等式.

    (二)整体感知

    通过复习等式创设情境,自然过渡到不等式的学习过程中,又通过细心的分析、审题寻找出正确的不等量关系,从而列出正确的不等式.

    (三)教学过程

    1.创设情境,复习导入

    我们已经学过等式和它的基本性质,请同学们观察下面习题,思考并回答:

    (1)什么是等式?等式中“=”两侧的代数式能否交换?“=”是否具有方向性?

    (2)已知数值:-5,,3,0,2,7,判断:上述数值哪些使等式成立?哪些使等式不成立?

    学生活动:首先自己思考,然后指名回答.

    教师释疑:①“=”表示相等关系,它没有方向性,等号两例可以相互交换,有时不交换只是因为书写习惯,例如方程的解.

    ②判断数取何值,等式成立和不成立实质上是在判断给定的数值是否为方程的解,因为等式为一元一次方程,它只有惟一解,所以等式只有在时成立,此外,均不成立.

    【教法说明】设置上述习题,目的是使学生温故而知新,为学习本节内容提供必要的知识准备.

    2.探索新知,讲授新课

    不等式和等式既有联系,又有区别,大家在学习时要自觉进行对比,请观察演示实验并回答:演示说明什么问题?

    师生活动:教师演示课本第54页天平称物重的两个实例(同时指出演示中物重为克,每个砝码重量均为1克),学生观察实验,思考后回答:演示中天平若不平衡说明天平两边所放物体的重量不相等.

    【教法说明】结合实际生活中同类量之间具有一种不相等关系的实例引入不等式的知识,能激发学生的学习兴趣.

    在实际生活中,像演示这样同类量之间具有不相等关系的例子是大量的、普遍的,这种关系需用不等式来表示.那么什么是不等式呢?请看:

    ,,

    ,,

    提问:(l)上述式子中有哪些表示数量关系的符号?(2)这些符号表示什么关系?(3)这些符号两侧的代数式可以随意交换位置吗?(4)什么叫不等式?

    学生活动:观察式予,思考并回答问题.

    答案:(1)分别使用“<”“>”“≠”.(2)表示不等关系.(3)不可以随意互换位置.(4)用不等号表示不等关系的式子叫不等式.

    不等号除了“<”“>”“≠”之外,还有无其他形式?

    学生活动:同桌讨论,尝试得到结论.

    教师释疑:①不等号除“<”“>”“≠”外,还有“≥”“≤”两种形式(“≥”是指“>”与“=”结合起来,读作“大于或等于”,也可理解成“不小于”;同理“≤”读作“小于或等于”,也可理解成“不大于”.)现在,我们来研究用“>”“<”表示的不等式.

    ②不等号“>”“<”表示不等关系,它们具有方向性,因而不等号两侧不可互交换,例如,不能写成.

    【教法说明】①通过学生自己观察思考,进而猜测出不等式的意义,这种教法充分发挥了学生的主体作用.

    ②通过教师释疑,学生对不等号的种类及其使用有了进一步的了解.

    3.尝试反馈,巩固知识

    同类量之间的大小关系常用“>”“<”来表示,请同学们根据自己对不等式的理解,解答习题.

    (1)用“<”或“>”境空.(抢答)

    ①4___-6;②-1____0③-8___-3;④-4.5___-4.

    (2)用不等式表示:

    ①是正数;②是负数;③与3的和小于6;④与2的差大于-1;⑤的4倍大于等于7;⑥的一半小于3.

    (3)学生独立完成课本第55页例1.

    注意:不是所有同类量都可以比较大小,例如不在同一直线上的两个力,它们只有等与不等关系,而无大小关系,这一点无需向学生说明.

    学生活动:第(l)题抢答;第(2)题在练习本上完成,由两个学生板演,完成之后,由学生判断板演是否正确

    教师活动:巡视辅导,统计做题正确的人数,同时给予肯定或鼓励.

    【教法说明】①第(1)题是为了调动积极性,强化竞争意识;第(2)题则是为了训练学生书面表述能力.

    ②教学时要注意引导学生将题目中表示不等关系的词语翻译成相应的不等号,例如“小于”用“<”表示,“大于等于”用“≥”表示.

    下面研究什么使不等式成立,请同学们尝试解答习题:

    已知数值;-5,,3,0,2,-2.5,5.2;

    (1)判断:上述数值哪些使不等式成立?哪些使不成立?

    (2)说出几个使不等式成立的的数值;说出几个使不成立的数值.

    学生活动:同桌研究讨论,尝试得到答案.

    教师活动:引导学生回答,使未知数的取值不仅有正整数,还有负数、零、小数.

    师生总结:判定不等式是否成立的方法就是:如果不等号两侧数值的大小关系与不等另一致,称不等式成立;否则不成立.例如对于;当时,的值小于6,就说时不等式成立;当时,的值不小于6,就说时,不成立.

    【教法说明】通过学生自己举例,培养他们运用已有的知识探索新知识的意识,同时也活跃了课堂气氛.

    4.变式训练,培养能力

    (1)当取下列数值时,不等式是否成立?

    -7,0,0.5,1,,10

    (2)①用不等式表示:与3的和小于等于(不大于)6;

    ②写出使上述不等式成立的几个的数值;

    ③取何值时,不等式总成立?取何值时不成立?

    学生在练习本上完成1题,2题,同桌订正;教师抽查,强调注意事项.

    【教法说明】

    ①使学生进一步了解使不等式成立的未知数的值可以有多个,为6.2讲解不等式的解集做准备.

    ②强化思维能力和归纳总结能力.

    (四)总结、扩展

    学生小结,师生共同完善:

    本节课的重点内容:1.掌握不等式是否成立的判断方法;2.依题意列出正确的不等式.

    注意:列不等式时,要注意把表示不等关系的词语用相庆的不等号来表示.例如“不大于”用“≤”表示,而不用“<”表示,这一点学生容易出现错误.

    八、布置作业

    (一)必做题:P61A组1,2,3.

    (二)选做题:

    1.单项选择

    (1)绝对值小于3的非负整数有()

    A.1,2B.0,1C.0,1,2D.0,1,3

    (2)下列选项中,正确的是()

    A.不是负数,则

    B.是大于0的数,则

    C.不小于-1,则

    D.是负数,则

    2.依题意列不等式

    (1)的3倍与7的差是非正数

    (2)与6的和大于9且小于12

    (3)A市某天的最低气温是-5℃,最高气温是10℃,设这天气温为℃,则满足的条件是____________________.

    【设计说明】1.再现本节重点,巩固所学知识.

    2.有层次性地布置作业,可以调动全体学生的学习积极性,这也是实施素质教育的具体体现.

    参考答案

    1.<,<,>,>,<,<

    2.5.2,6,8.3,11是的解,-10,-7,-4.5,0,3不是解

    3.(1)(2)(3)(4)

    (二)1.(1)C(2)D

    2.(1)(2)(3)

    九、板书设计

    6.1(一)

    一、什么叫不等式?

    用:“>”“<”“≠”“≥”“≤”表示不等关系的式子叫不等式.

    重点研究“>”“<”

    二、依题意列不等式

    “大于”“>”;“小于”“<”;“不大于”“≤”;“不小于”“≥”;

    三、不等式能否成立

    时,(√);时,(×);

    时,(×)

    四、归纳总结重点

    (一)依题意列不等式.

    (二)会判断不等式是否成立.

    十、背景知识与课外阅读

    费马数

    费马(P.deFermat)是17世纪法国著名数学家,是法国南部土鲁斯议会的议员,他在数论、解析几何、概率论三个方面都有重要贡献.他无意发表自己的著作,平生没有完整的著作问世.去世后,人们才把他写在书页空白处和给朋友的书信中,以及一些陈旧手稿中的论述收集汇编成书.费马特别爱好数论,在这方面有好几项成就,如费马数、费马小定理、费马大定理等.

    费马于1640年前后,在验算了形如

    的数当的值分别为

    3,5,17,257,65537

    后(请注意这些数均为质数)便宣称:对于为任何自然数,是质数.

    大约过了100年,1732年数学家欧拉(L.Euler)指出

    从而否定了费马的上述结论(猜想).

    尔后,人们又对进行了大量研究,发现在中,除了上述五个质数外,人们尚未再发现新的质数.

    虽然费马的这个猜想是错误的,但为了纪念这位数学家,人们仍把这种形式的数叫做费马数.

    数学教案-不等式它的基本性质初中教案精选


    一、素质教育目标

    (一)知识教学点

    1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.

    2.灵活运用不等式的基本性质进行不等式形.

    (二)能力训练点

    培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.

    (三)德育渗透点

    培养学生积极主动的参与意识和勇敢尝试、探索的精神.

    (四)美育渗透点

    通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

    二、学法引导

    1.教学方法:观察法、探究法、尝试指导法、讨论法.

    2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.

    三、重点难点疑点及解决办法

    (一)重点

    掌握不等式的三条基本性质,尤其是不等式的基本性质3.

    (二)难点

    正确应用不等式的三条基本性质进行不等式变形.

    (三)疑点

    弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.

    (四)解决办法

    讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.

    四、课时安排

    一课时

    五、教具学具准备

    投影仪或电脑、自制胶片.

    六、师生互动活动设计

    1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.

    2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.

    3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.

    七、教学步骤

    (-)明确目标

    本节课主要学习不等式的三条基本性质并能熟练地加以应用.

    (二)整体感知

    通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.

    (三)教学过程

    1.创设情境,复习引入

    什么是等式?等式的基本性质是什么?

    学生活动:独立思考,指名回答.

    教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.

    请同学们继续观察习题:

    (1)用“>”或“<”填空.

    ①7+3____4+3②7+(-3)____4+(-3)

    ③7×3____4×3④7×(-3)____4×(-3)

    (2)上述不等式中哪题的不等号与7>4一致?

    学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.

    【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.

    不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.

    学生活动:观察思考,猜想出不等式的性质.

    教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”

    师生活动:师生共同叙述不等式的性质,同时教师板书.

    不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.

    对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?

    学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.

    【教法说明】观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?

    师生活动:由学生概括总结不等式的其他性质,同时教师板书.

    不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.

    不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变.

    师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.

    学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.

    强调:要特别注意不等式基本性质3.

    实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.

    不等式的基本性质与等式的基本性质有哪些区别、联系?

    学生活动:思考、同桌讨论.

    归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.

    ①若,则,;

    ②若,且,则,;

    ③若,且,则,.

    师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.

    注意:不等式除了上述性质外,还有以下性质:①若,则.②若,且,则,这些先不要向学生说明.

    2.尝试反馈,巩固知识

    请学生先根据自己的理解,解答下面习题.

    例1根据不等式的基本性质,把下列不等式化成或的形式.

    (1)(2)(3)(4)

    学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.

    教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.

    解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.

    所以

    (2)根据不等式基本性质1,两边都减去,得

    (3)根据不等式基本性质2,两边都乘以2,得

    (4)根据不等式基本性质3,两边都除以-4得

    【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.

    例2设,用“<”或“>”填空.

    (1)(2)(3)

    学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.

    解:(1)因为,两边都减去3,由不等式性质1,得

    (2)因为,且2>0,由不等式性质2,得

    (3)因为,且-4<0,由不等式性质3,得

    教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.

    注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

    【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.

    3.变式训练,培养能力

    (1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)

    ①∵∴()②∵∴()

    ③∵∴()④∵∴()

    ⑤∵∴⑥∵∴()

    学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.

    答案:

    ①(A)②(B)

    ③(C)④(C)

    ⑤(C)⑥(A)

    【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.

    (2)单项选择:

    ①由得到的条件是()

    A.B.C.D.

    ②由由得到的条件是()

    A.B.C.D.

    ③由得到的条件是()

    A.B.C.D.是任意有理数

    ④若,则下列各式中错误的是()

    A.B.C.D.

    师生活动:教师选出答案,学生判断正误并说明理由.

    答案:①A②D③C④D

    (3)判断正误,正确的打“√”,错误的打“×”

    ①∵∴()②∵∴()

    ③∵∴()④若,则∴,()

    学生活动:一名学生说出答案,其他学生判断正误.

    答案:①√②×③√④×

    【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.

    (四)总结、扩展

    1.本节重点:

    (1)掌握不等式的三条基本性质,尤其是性质3.

    (2)能正确应用性质对不等式进行变形.

    2.注意事项:

    (1)要反复对比不等式性质与等式性质的异同点.

    (2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.

    3.考点剖析:

    不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.

    八、布置作业

    (一)必做题:P61A组4,5.

    (二)选做题:P62B组1,2,3.

    参考答案

    (一)4.(1)(2)(3)(4)

    5.(1)(2)(3)(4)

    (5)(6)

    (二)1.(1)(2)(3)

    2.(1)(2)(3)(4)

    3.(1)(2)(3)

    九、板书设计

    6.1不等式和它的基本性质(二)

    一、不等式的基本性质

    1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.

    若,则,.

    2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若,,则.

    3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若,,则.

    二、应用

    例1解(1)(2)

    (3)(4)

    例2解(1)(2)

    (3)

    三、小结

    注意不等式性质3的应用.

    十、背景知识与课外阅读

    盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?

    【月度教案精选 《分数的基本性质》教学思考其八】相关推荐
    五年级下学期班主任工作计划 优秀范文模板

    充分准备一份教案是一名优秀教师的职责所在,我们可以通过教案来进行更好的教学,每一位教师都要慎重考虑教案的设计,你是否在烦恼教案怎么写呢?可以看看本站收集的《五年级下学期班主任工作计划 优秀范文模板》,希望能够为您提供参考。五年级下学期班主任工作计划新的一学期又开始了,为了在新的学期里把工作做好,把我...

    2022春四年级班主任工作计划

    按照学校要求,教师都需要用到教案,教案在我们教师的教学中非常重要,做好教案对我们未来发展有着很重要的意义,如何才能写好教案呢?下面是小编特地为大家整理的“春四年级班主任工作计划”。20xx春四年级下学期班主任工作计划本学期我继续担任四年级的班主任,为了更好地开展工作,现拟订本学期班主任工作计划。一、...