【www.jk251.com - 疫情线上教学总结】
认真准备一份教案是一名教师的职责所在,教案在我们的教学生活当中十分常见,可以通过编写教案认识自己教学的优点和不足。你是否在烦恼高中教案怎么写呢?下面是由小编为大家整理的高中教案西地平线上【荐】,仅供参考,欢迎大家阅读。
【三维目标】
1.培养学生对大自然的审美情感体验哪里和审美表达能力;2.培养学生的文本感知、概括和鉴赏评价能力。
【过程与方法】
1.自主学习与合作学习相结合;2.探究与活动,亲近大自然。
【情感态度与价值观】
加强自然美的审美教育,陶冶情感,提升精神境界。
【教学重点】培养学生对大自然的审美情感体验哪里和审美表达能力
【教学难点】对“大美”的理解
【教具准备】投影仪,胶片
【课时安排】一课时
【教学过程】
一.导入
(略)
二.整体感知:
1.快速浏览全文。
2.思考:
1读完全文,你觉得西地平线上落日的总体特征是什么?
2最能概括全文内容的语句是什么?
3贯穿全文的感情线索是哪两个字?
用原文语句回答。
明确:“雄伟”;
“在所有雄伟的风景中,落日大约是最令我震撼的了”;
“震撼”
二.文本研习:三次落日
小组讨论:
1.找出三次落日的背景和特征以及作者的感受。
第一次:定西高原苍茫的远方弧状的群山之颠、左公柳
柔和美丽安谧——动感——慈爱
“惊呆”“恍若一场梦境”
第二次:罗布淖尔荒原
血红辉煌
“像在画中”“死亡原来也可以是一件充满庄严和尊严的事情”
第三次:阿勒泰草原
火烧云:灿烂热烈夸张
“我多么卑微呀”“我多么平庸呀”
2.说说你最喜欢作者笔下的哪次落日,为什么?(只要言之成理)
3.从写作手法来品味三次落日。(朗读)
明确:第一次:比喻,突出落日之大、圆。
拟人,将落日人格化。
第二次:对比。荒原的景色——冰冷的太阳——血红的落日
突出落日的辉煌、鲜艳
渲染。在欣赏落日的过程中播放《泰坦尼克号》,体会悲壮的氛围。
第三次:侧面烘托。用火烧云来表现落日的灿烂。
4.作者在观赏落日时,有了许多联想,找出来,说说与落日有什么关系。
明确:第一次:左宗棠出征的情形。左氏的悲壮与落日的壮美很相似,爱国爱乡。
第二次:罗曼?罗兰创作的《约翰?克里斯多夫》时看到日出的情形。落日比日出更庄严、神圣和具有悲剧感。
第三次:成吉思汗的历史功绩。勇敢走进辉煌,走进历史的长河,与太阳把它的余热献给火烧云,造福后人很相似。
三次丰富的联想,让人感受到西部不仅有壮美的落日,还有深厚的人文历史。作者对这样的土地自然充满了热爱,所以文末再次提到“雄伟的风景”和“世间的大美”,与更多的人分享。
三.总结。
四.拓展迁移:
请同学们表述身边的自然之美,写写我们苏中平原的落日、引起的联想和你的感受。
Jk251.com相关文章推荐
高中教案弹【荐】
[教学目标]⑴知道弹力是怎样产生的;⑵掌握弹力产生的条件和弹力三要素;⑶知道胡克定律及实际运用所适用的条件。
[课时]1课时
[教学方法]实验法、讲解法
[教学用具]钢尺、弹簧、重物(钩码)等
[教学过程]
一、复习提问
1、重力是怎样产生的?其方向如何?
2、复习初中内容:形变;弹性形变。
二、新课教学
由复习过渡到新课,并演示说明(板书)
(一)形变
(1)形变
(2)弹性形变
演示图示1中的实验,请同学们注意仔细观察并回答下列问题。
①重物受哪些力?(重力、支持力。这二力平衡。)
②支持力是谁加给重物的?(钢尺)
③钢尺为什麽能对重物产生支持力?(钢尺发生了弹性形变)
由此引出:
(二)弹力
(1)弹力:发生弹性形变的物体,会对跟它直接接触的物体产生力的作用。这种力就叫弹力。
就上述实验继续提问:④由此可见,支持力是一种什麽样的力?
⑤重物放在钢尺上,钢尺就弯曲,为什麽?(重物在重力作用下与钢尺直接接触,从而发生微小形变,对钢尺产生了向下的弹力即压力。)
可见,压力支持力都是弹力。并进一步分析得出:
(2)弹力产生的条件:物体直接接触并发生弹性形变。
(3)弹力的方向
提问:课本放在桌子上。书给桌子的压力和桌子对书的支持力属什麽样性质的力?其受力物体、施力物体各是什麽?方向如何?
与学生讨论,然后总结。
①压力的方向总是垂直与支持面而指向受力物体(被压物体)。
②支持力的方向总是垂直与支持面而指向受力物体(被支持物体)。
提问:电灯对电线产生的拉力和电线对电灯产生的拉力属什麽样性质的力?
其受力物体、施力物体各是什麽?方向如何?
分析讨论,总结。
③绳的拉力是绳对所拉物体的弹力,方向总是沿着绳而指向绳收缩的方向。
(三)胡克定律
弹力的大小与形变有关,同一物体,形变越大,弹力越大。弹簧的弹力,与形变的关系为:
在弹性限度内,弹力的大小f跟弹簧的伸长(或缩短)的长度x成正比,即:f=kx。式中k叫弹簧的倔强系数,单位:N/m。它由弹簧本身所决定。不同弹簧的倔强系数一般不相同。这个规律是英国科学家胡克发现的,叫胡克定律。胡克定律的适用条件:只适用于伸长或压缩形变。
三、小结
四、学生练习:阅读课文。
五、布置作业:(1)(3)(5)与学生一起讨论。作业本上写(2)(4)。
高中教案映射【荐】
教学目标
1.了解的概念,象与原象的概念,和一一的概念.
(1)明确是特殊的对应即由集合,集合和对应法则f三者构成的一个整体,知道的特殊之处在于必须是多对一和一对一的对应;
(2)能准确使用数学符号表示,把握与一一的区别;
(3)会求给定的指定元素的象与原象,了解求象与原象的方法.
2.在概念形成过程中,培养学生的观察,比较和归纳的能力.
3.通过概念的学习,逐步提高学生对知识的探究能力.
教学建议
教材分析
(1)知识结构
是一种特殊的对应,一一又是一种特殊的,而且函数也是特殊的,它们之间的关系可以通过下图表示出来,如图:
由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.
(2)重点,难点分析
本节的教学重点和难点是和一一概念的形成与认识.
①的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合中的唯一这点要求的理解;
是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多.其中只有一对一和多对一的能构成,由此可以看到必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.
②而一一又在的基础上增加新的要求,决定了它在学习中是比较困难的.
教法建议
(1)在概念引入时,可先从学生熟悉的对应入手,选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是,逐步归纳概括出的基本特征,让学生的认识从感性认识到理性认识.
(2)在刚开始学习时,为了能让学生看清的构成,可以选择用图形表示,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识,而后再选择用抽象的数学符号表示,比如:
,.
这种表示方法比较简明,抽象,且能看到三者之间的关系.除此之外,的一般表示方法为,从这个符号中也能看到是由三部分构成的整体,这对后面认识函数是三件事构成的整体是非常有帮助的.
(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出的例子,教师也给出一些的例子,让学生从中发现的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现的特点,一起概括.最后再让学生举例,并逐步增加要求向一一靠拢,引出一一概念.
(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对的认识.
(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.
教学设计方案
2.1
教学目标(1)了解的概念,象与原象及一一的概念.
(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.
(3)通过概念的学习,逐步提高学生的探究能力.
教学重点难点::概念的形成与认识.
教学用具:实物投影仪
教学方法:启发讨论式
教学过程:
一、引入
在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用的观点给出函数的定义.那么是什么呢?这就是我们今天要详细的概念.
二、新课
在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)
我们今天要研究的是一类特殊的对应,特殊在什么地方呢?
提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?
让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)
提问2:能用自己的语言描述一下这几个对应的共性吗?
经过师生共同推敲,将的定义引出.(主体内容由学生完成,教师做必要的补充)
(板书)
一.
1.定义:一般地,设两个集合,如果按照某种对应法则,对于集合中的任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合及到的对应法则)叫做集合到集合的,记作.
定义给出之后,教师应及时强调是特殊的对应,故是三部分构成的一个整体,从的符号表示中也可看出这一点,它的特殊之处在于元素与元素之间的对应必须作到“任一对唯一”,同时指出具有对应关系的元素即中元素对应中元素,则叫的象,叫的原象.
(板书)
2.象与原象
可以用前面的例子具体说明谁是谁的象,谁是谁的原象.
提问3:下面请同学根据自己对的理解举几个的例子,看对是否真正认识了.
(开始时只要是即可,之后可逐步提高要求,如集合是无限集,或生活中的例子等)由学生自己评判.之后教师再给出几个(主要是补充学生举例类型的不足)
(1),,,.
(2).
(3)除以3的余数.
(4){高一1班同学},{入学是数学考试成绩},对自己的考试成绩.
在学生作出判断之后,引导学生发现的性质(教师适当提出研究方向由学生说,再由老师概括)
(板书)3.对概念的认识
(1)与是不同的,即与上有序的.
(2)象的集合是集合B的子集.
(3)集合A,B可以是数集,也可以是点集或其它集合.
在刚才研究的基础上,教师再提出(2)和(4)有什么共性,能否把它描述出来,如果学生不能找出共性,教师可再给出几个例子,(用投影仪打出)
如:
(1)
(2){数轴上的点},实数与数轴上相应的点对应.
(3){中国,日本,韩国},{北京,东京,汉城},相应国家的首都.
引导学生在元素之间的对应关系和元素个数上找共性,由学生提出两点共性集合A中不同的元素对集合B中不同的元素;②B中所有元素都有原象.
那么满足以上条件的又是一种特殊的,称之为一一.
(板书)4.一一
(1)定义:设A,B是两个集合,是集合A到集合B的,如果在这个下对于集合A中的不同元素,在集合B中又不同的象,而且B中每一个元素都有原象,那么这个叫做A到B上的一一.
给出定义后,可再返回到刚才的例子,让学生比较它与的区别,从而进一步明确“一一”的含义.然后再安排一个例题.
例1下列各表表示集合A(元素a)到集合B(元素b)的一个,判断这些是不是A到B上的一一.
其中只有第三个表可以表示一一,由此例点明一一的特点
(板书)(2)特点:两个集合间元素是一对一的关系,不同的对的也一定是不同的(元素个数相同);集合B与象集C是相等的集合.
对于我们现在了解了它的定义及特殊的一一,除此之外对于还要求能求出指定元素的象与原象.
(板书)5.求象与原象.
例2(1)从R到的,则R中的-1在中的象是_____;中的4在R中的原象是_____.
(2)在给定的下,则点在下的象是_____,点在下的原象是______.
(3)是集合A到集合B的,,则A中元素的象是_____,B中象0的原象是______,B中象-6的原象是______.
由学生先回答第(1)小题,之后让学生自己总结一下,应用什么方法求象和原象,学生找到方法后,再在方法的指导下求解另外两题,若出现问题,教师予以点评,最后小结求象用代入法,求原象用解方程或解方程组.
注意:所解的方程解的情况可能有多种如有唯一解,也可能无解,可能有无数解,这与的定义也是相吻合的.但如果是一一,则方程一定有唯一解.
三、小结
1.是特殊的对应
2.一一是特殊的.
3.掌握求象与原象的方法.
四、作业:略
五、板书设计
探究活动
(1){整数},{偶数},,试问与中的元素个数哪个多?为什么?如果我们建立一个由到的对应法则乘以2,那么这个是一一吗?
答案:两个集合中的元素一样多,它们之间可以形成一一.
(2)设,,问最多可以建立多少种集合到集合的不同?若将集合改为呢?结论是什么?如果将集合改为,结论怎样?若集合改为,改为,结论怎样?
从以上问题中,你能归纳出什么结论吗?依此结论,若集合A中含有个元素,集合B中含有个元素,那么最多可以建立多少种集合到集合的不同?
答案:若集合A含有m个元素,集合B含有n个元素,则不同的有个.
高中教案排列【荐】
教学目标
(1)正确理解的意义。能利用树形图写出简单问题的所有;
(2)了解和数的意义,能根据具体的问题,写出符合要求的;
(3)掌握数公式,并能根据具体的问题,写出符合要求的数;
(4)会分析与数字有关的问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是的定义、数及数的公式,并运用这个公式去解决有关数的应用问题.难点是导出数的公式和解有关的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决应用问题当中.
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个.因此,两个相同,当且仅当他们的元素完全相同,并且元素的顺序也完全相同.数是指从n个不同元素中任取m(m≤n)个元素的所有不同的种数,只要弄清相同、不同,才有可能计算相应的数.与数是两个概念,前者是具有m个元素的,后者是这种的不同种数.从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个,而这种有序集的个数,就是相应的数.
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好的推导.
的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.
在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.
在教学应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.
三、教法建议
①在讲解数的概念时,要注意区分“数”与“一个”这两个概念.一个是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;数是指“从n个不同元素中取出m个元素的所有的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab,ac,ba,bc,ca,cb,
其中每一种都叫一个,共有6种,而数字6就是数,符号表示数.
②的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序”.
从定义知,只有当元素完全相同,并且元素的顺序也完全相同时,才是同一个,元素完全不同,或元素部分相同或元素完全相同而顺序不同的,都不是同一。叫不同.
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.
在的定义中,如果有的书上叫选,如果,此时叫全.
要特别注意,不加特殊说明,本章不研究重复问题.
③关于数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导,,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.
导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是,共m个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.
公式是在引出全数公式后,将数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的数的值,常用前一个公式,而要对含有字母的数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释.
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.
⑤学生在开始做应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.
教学设计示例
教学目标
(1)正确理解的意义。能利用树形图写出简单问题的所有;
(2)了解和数的意义,能根据具体的问题,写出符合要求的;
(3)会分析与数字有关的问题,培养学生的抽象能力和逻辑思维能力;
教学重点难点
重点是的定义、数并运用这个公式去解决有关数的应用问题。
难点是解有关的应用题。
教学过程设计
一、复习引入
上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):
1.书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书.
(1)从中任取1本,有多少种取法?
(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?
2.某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?
找一同学谈解答并说明怎样思考的的过程
第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是:50×40=2000.
第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区.
二、讲授新课
学习了两个基本原理之后,现在我们继续学习问题,这是我们本节讨论的重点.先从实例入手:
1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?
由学生设计好方案并回答.
(1)用加法原理设计方案.
首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票.
(2)用乘法原理设计方案.
首先确定起点站,在三个站中,任选一个站为起点站,有3种方法.即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选.那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序不同方法共有3×2=6种.
根据以上分析由学生(板演)写出所有种飞机票
再看一个实例.
在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?
找学生谈自己对这个问题的想法.
事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数.
首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;
其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.
根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).
根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况)
第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来.
由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数.
根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).
请板演的学生谈谈怎样想的?
第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种取法.
第二步,确定十位上的数字.当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法.
第三步,确定个位上的数字.当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法.
根据乘法原理,所以共有4×3×2=24种.
下面由教师提问,学生回答下列问题
(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?
都是从一些研究的对象之中取出某些研究的对象.
(2)取出的这些研究对象又做些什么?
实质上按着顺序排成一排,交换不同的位置就是不同的情况.
(3)请大家看书,第×页、第×行.我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素.
上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法.
第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法.
第三个问题呢?
从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法.
给出定义
请看课本,第×页,第×行.一般地说,从n个不同的元素中,任取m(m≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个.
下面由教师提问,学生回答下列问题
(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的?什么是不同的?
从的定义知道,如果两个相同,不仅这两个的元素必须完全相同,而且的顺序(即元素所在的位置)也必须相同.两个条件中,只要有一个条件不符合,就是不同的.
如第一个问题中,北京—广州,上海—广州是两个,第三个问题中,213与423也是两个.
再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但顺序不同,也是两个.
(2)还需要搞清楚一个问题,“一个”是不是一个数?
生:“一个”不应当是一个数,而应当指一件具体的事.如飞机票“北京—广州”是一个,“红黄绿”是一种信号,也是一个.如果问飞机票有多少种?能表示出多少种信号.只问种数,不用把所有情况罗列出来,才是一个数.前面提到的第三个问题,实质上也是这样的.
三、课堂练习
大家思考,下面的问题怎样解?
有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)
分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的问题.
解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱.
第二步从余下的三张卡片中任选符合条件的一张放在第2空箱.
第三步从余下的两张卡片中任选符合条件的一张放在第3空箱.
第四步把最后符合条件的一张放在第四空箱.具体排法,用下面图表表示:
所以,共有9种放法.
四、作业
课本:P232练习1,2,3,4,5,6,7.
高中教案曲线方程【荐】
教学目标
(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题.
(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念.
(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点.
(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法.
(5)进一步理解数形结合的思想方法.
教学建议
教材分析
(1)知识结构
曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.
(2)重点、难点分析
①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.
②本节的难点是曲线方程的概念和求曲线方程的方法.
教法建议
(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.
(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.
(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.
(4)从集合与对应的观点可以看得更清楚:
设表示曲线上适合某种条件的点的集合;
表示二元方程的解对应的点的坐标的集合.
可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即
(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做.同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得.教学中对课本例2的解法分析很重要.
这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即
文字语言中的几何条件数学符号语言中的等式数学符号语言中含动点坐标,的代数方程简化了的,的代数方程
由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程.”
(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”.
教学设计示例
课题:求曲线的方程(第一课时)
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.
(2)进一步理解曲线的方程和方程的曲线.
(3)初步掌握求曲线方程的方法.
(4)通过本节内容的教学,培养学生分析问题和转化的能力.
教学重点、难点:求曲线的方程.
教学用具:计算机.
教学方法:启发引导法,讨论法.
教学过程:
【引入】
1.提问:什么是曲线的方程和方程的曲线.
学生思考并回答.教师强调.
2.坐标法和解析几何的意义、基本问题.
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程.
(2)通过方程,研究平面曲线的性质.
事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.
【问题】
如何根据已知条件,求出曲线的方程.
【实例分析】
例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.
首先由学生分析:根据直线方程的知识,运用点斜式即可解决.
解法一:易求线段的中点坐标为(1,3),
由斜率关系可求得l的斜率为
于是有
即l的方程为
①
分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?
(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).
证明:(1)曲线上的点的坐标都是这个方程的解.
设是线段的垂直平分线上任意一点,则
即
将上式两边平方,整理得
这说明点的坐标是方程的解.
(2)以这个方程的解为坐标的点都是曲线上的点.
设点的坐标是方程①的任意一解,则
到、的距离分别为
所以,即点在直线上.
综合(1)、(2),①是所求直线的方程.
至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:
解法二:设是线段的垂直平分线上任意一点,也就是点属于集合
由两点间的距离公式,点所适合的条件可表示为
将上式两边平方,整理得
果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.
这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.
让我们用这个方法试解如下问题:
例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.
分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.
求解过程略.
【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;
(2)写出适合条件的点的集合
;
(3)用坐标表示条件,列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点.
一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.
下面再看一个问题:
例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.
【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.
解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合
由距离公式,点适合的条件可表示为
①
将①式移项后再两边平方,得
化简得
由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.
【练习巩固】
题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.
分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.
根据条件,代入坐标可得
化简得
①
由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?
【作业】课本第72页练习1,2,3;
【板书设计】
§7.6求曲线的方程
坐标法:
解析几何:
基本问题:
(1)
(2)
例1:
例2:
求曲线方程的步骤:
例3
练习:
小结:
作业:
高中教案基本作图【荐】
教学目标
1.熟练运用尺规完成四种,并会写出已知、求作和作法.
2.培养学生准确的数学语言表达能力.
教学重点和难点
重点是掌握四种;难点是用准确精练的几何语言叙述作图过程.
教学过程设计
一、作图的预备知识
1.明确尺规作图和的含义.
教师应着重强调尺规作图与以前画图的区别,如解释以前角平分线,垂线、平行线的画法为什么不符合尺规作图的要求.
2.常用的作图语句的练习.
(1)如图1(a),平面上有三点A,B,C,按下列要求完成作图:
①过点A,点B作直线AB(简称“作直线AB”);
②作射线CA;
③延长BC到D,使CD=BC;
④在线段BA上截取BH=BC;
⑤连结两点H,C(简称“连结HC”).
答案见图1(b).
(2)如图1(c),按下列要求完成作图:
①以点D为圆心,AD为半径作弧交DC于E;
②分别以点B,C为圆心,DC为半径作弧,两弧交于点F,G.
以上为七种基本语句.
二、思考并实现四种
1.作一个角等于已知角.
(1)教师带领学生分析标题,分清已知、求作,并用数学符号表示.注意“求作”中先写出作什么图形,再写出它所需满足的条件.
已知∠AOB(如图2(a)).求作:∠A′O′B′,使∠A′O′B′=∠AOB.
(2)教师应启发学生思考作图的实现过程,注意以下几点:
①思路:利用全等三角形的判定方法来实现作图过程,将∠AOB放到△COD中(如图2(b)),利用“SAS”公理作出与△COD全等的△C′O′D′,从而得
到∠A′O′B′=∠AOB(如图2(c)).
②为简化作图过程,便于操作,可取△COD为等腰三角形,即在∠AOB的两边上截取OC=OD.更进一步地,可改造成尺规作图的语言,引导学生用简练的作图语句准确描述作图的实施过程.
(3)按照课本作法作图并证明.证明时要注意作图的作法中提供的边的条件.
以下几种都可仿照此步骤处理.
2.平分已知角.
已知:∠AOB(如图3).
求作:∠AOB内部的射线OC,使∠AOC=∠COB.
(1)教师重点分析作法是怎样想出来的.
①借鉴Ⅰ的思路,画出符合条件的示意图,分析如何构造以∠AOC,
∠COB为元素的两个全等三角形.
答:用“SSS”构造△ODF与△OEF,其中OD=OE,F在OC上,DF=EF.
②分析如何用作图实现以上过程:
要使OD=OE,以O为圆心任意长为半径作弧即可;要确定∠AOB上一点F,使DF=EF,只要分别以D,E为圆心,特定长a为半径作弧,注意为保证两弧能有
(2)让学生整理思路,按课本作法作图并证明.
练习1作平角∠AOB的平分线OC,并回答OC与直线AB有何关系?
练习2如图4,已知:钝角∠MCN.
①求作∠MCN的平分线CF;
②在学生画出图4的基础上,求证ED⊥CF,CF平分DE.
3.经过一点作已知直线的垂线.
已知直线AB和一点C,求作AB的垂线,使它过点C.
注意以下几点:
(1)分析标题时,引导学生自发讨论已知点C与已知直线AB的位置关系(两种情况).
(2)对于点C在直线AB上的情况,引导学生将新问题化归为已知情况——过直线AB上一点C平分平角∠ACB.
(3)当点C不在直线AB上时,引导学生由练习2的作法和证明结论来提炼出本题的作图方法:先确定D,E两点(注意书上选取K点的作用),再确定F点(找F时所作弧的半径有特定条件).
4.作线段的垂直平分线.
重点分析4与练习2的关系.
分析图4中的结论:CF垂直平分DE,要作DE的垂直平分线CF,只需确
三、四种的变式和复合练习
例1用尺规按下列要求作图.(不写作法只画图)
(1)如图5,在∠AOD的内部作射线OB,使∠AOB=∠COD.
(2)作一个角的余角.
(3)把线段AB四等分.
(4)如图6,在钝角△ABC中,∠ABC为钝角.求作:
①△ABC中∠ACB的平分线CD;
②△ABC中BC边上的高AH;
③AC边的中垂线EF;
④AB边上的中线CG.
(5)如图7,已知直线AB和AB外一点C.求作:过C的直线CD∥AB.(提示:过C作直线l交AB于点E,在点C处作∠CEB的同位角(或内错角),使它等
于∠CEB.)
四、师生共同小结
1.目前已学过的五种;
2.几种常用的作图语句;
3.尺规作图的基本步骤;
4.以后作图中再遇到五种时,不必再重复作图的详细过程,只需给出标题,如作线段的垂直平分线”.
五、作业(略)
课堂教学设计说明
本教学设计需2课时完成.
1.为了分散难点,便于学生用语言准确叙述本节课的,教师设计了预备知识这一部分,目的是让学生熟悉所要用到的常用作图语句,以及让学生自己分析思考如何用这些语句来解决本节的.
2.的分析过程要教给学生分析的方法,逐层实现目的,并要揭示四个分别“怎样想出来”和“为什么这样想”的思维过程,变学生“被动接受”为“主动探索发现”,更好地理解和掌握四种.
3.教师根据课时情况,可将第三部分的的部分练习题(如例1(1),(4)①)插到1,2后.
4.本课在2后面设计了两个练习,目的是既巩固2的各种变式情况下的作图,又为3,4启发思路.实质上,作角平分线与作垂线和中垂线的方法相类似.
高中教案曲线运动【荐】
教学目标
知识目标
1、知道是一种变速运动,它在某点的瞬时速度方向在曲线这一点的切线上.
2、理解物体做的条件是所受合外力与初速度不在同一直线上.
能力目标
培养学生观察实验和分析推理的能力.
情感目标
激发学生学习兴趣,培养学生探究物理问题的习惯.
教学建议
教材分析
本节教材主要有两个知识点:的速度方向和物体做的条件.教材一开始提出与直线运动的明显区别,引出的速度方向问题,紧接着通过观察一些常见的现象,得到中速度方向是时刻改变的,质点在某一点(或某一时刻)的速度方向是曲线的这一点(或这一时刻)的切线方向.再结合矢量的特点,给出是变速运动.关于物体做的条件,教材从实验入手得到:当运动物体所受合外力的方向跟它的速度方向不在同一直线上时,物体就做.再通过实例加以说明,最后从牛顿第二定律角度从理论上加以分析.教材的编排自然顺畅,适合学生由特殊到一般再到特殊的认知规律,感性知识和理性知识相互渗透,适合对学生进行探求物理知识的训练:创造情境,提出问题,探求规律,验证规律,解释规律,理解规律,自然顺畅,严密合理.本节教材的知识内容和能力因素,是对前面所学知识的重要补充,是对运动和力的关系的进一步理解和完善,是进一步学习的基础.
教法建议
“关于的速度方向”的教学建议是:首先让学生明确是普遍存在的,通过图片、动画,或让学生举例,接着提出问题,怎样确定做的物体在任意时刻速度的方向呢?可让学生先提出自己的看法,然后展示录像资料,让学生总结出结论.接着通过分析速度的矢量性及加速度的定义,得到是变速运动.
“关于物体做的条件”的教学建议是:可以按照教材的编排先做演示实验,引导学生提问题:物体做的条件是什么?得到结论,再从力和运动的关系角度加以解释.如果学生基础较好,也可以运用逻辑推理的方法,先从理论上分析,然后做实验加以验证.
教学设计方案
教学重点:的速度方向;物体做的条件
教学难点:物体做的条件
主要教学过程设计:
一、的速度方向:
(一)让学生举例:物体做的一些实例
(二)展示图片资料1、上海南浦大桥2、导弹做3、汽车做
(三)展示录像资料:l、弯道上行驶的自行车
通过以上内容增强学生对的感性认识,紧接着提出的速度方向问题:
(四)让学生讨论或猜测,的速度方向应该怎样?
(五)展示录像资料2:火星儿沿砂轮切线飞出3:沾有水珠的自行车后轮原地运转
(六)让学生总结出的方向
(七)引导学生分析推理:速度是矢量→速度方向变化,速度矢量就发生了变化→具有加速度→是变速运动.
二、物体做的条件:
[方案一]
(一)提出问题,引起思考:沿水平直线滚动的小球,若在它前进的方向或相反方向施加外力,小球的运动情况将如何?若在其侧向施加外力,运动情况将如何?
(二)演示实验;钢珠在磁铁作用下做的情况,或钢珠沿水平直线运动之后飞离桌面的情况.
(三)请同学分析得出结论,并通过其它实例加以巩固.
(四)引导同学从力和运动的关系角度从理论上加以分析.
[方案二]
(一)由物体受到合外力方向与初速度共线时,物体做直线运动引入课题,教师提出问题请同学思考:如果合外力垂直于速度方向,速度的大小会发生改变吗?进而将问题展开,运用力的分解知识,引导学生认识力改变运动状态的两种特殊情况:
1、当力与速度共线时,力会改变速度的大小;
2、力与速度方向垂直时,力只会改变速度方向.
最后归结到:当力与初速度成角度时,物体只能做,确定物体做哪一种运动的依据是合外力与初速度的关系.
(二)通过演示实验加以验证,通过举生活实例加以巩固:
展示课件三,人造卫星做,让学生进一步认识的相关知识.
课件2,抛出的手榴弹做,加强认识.
探究活动
观察并思考,现实生活中物体做的实例,并分析物体所受合外力的情况与各点速度的关系.
高中教案光的反射【荐】
教学目标
知识目标
1、掌握反射定律,理解镜面反射和漫反射的异同.
2、掌握平面镜成像的基本原理,知道什么是虚像,掌握平面镜成虚象的作图法和和利用几何知识进行光路控制的有关计算.
能力目标
1、知道反射光路是可逆的,并能用来解释光现象和计算有关的问题.
2、知道平面镜是怎样成像的,会画成像的光路图,
3、知道像的特点,能够证明物和像是镜面对称的.
情感目标
培养学生通过所学的物理知识来认识自然界,从而热爱生活,用正确的科学的态度对待生活,培养正确的世界观和人生观.
教学建议
关于光的反射、平面镜的教学建议
(-)引入新课
上一节我们学习了光的直线传播,知道光在同一种均匀介质中是沿直线传播的,光在真空中的传播速度是3×108m/s,光在其他介质中也是沿直线传播的,只是其传播速度小于真空中光速,当光照到两种介质的交界面时,发生反射现象,光的反射现象,我们在初中也已经做过初步的学习,现在我们将进一步学习这一部分内容.
(二)教学过程
光的反射部分在内容上与初中没有太大的区别,所以可以先让学生思考自学,而后教师进行讲解和分析.教师可以将主要精力放在平面镜的成像上.
学生思考:
何为光的反射?
光的反射定律内容是什么?
列举光的反射现象.
漫反射和镜面反射的区别和联系.
平面镜成像的特点和规律.
平面镜成像做图.
教师讲解:
光的反射
1、人是怎样看见周围物体的?
物体发出的光(或物体被照明而反射出来的光)进入人的眼睛,并在视网膜上形成清晰的像,人根据这像来识别物体.
2.光的反射定律:
(1)反射光线、入射光线、法线在同一平面内.
(2)反射光线,入射光线在法线两侧.(3)反射角等于入射角.
A、入射角、反射角是指入射光线、反射光线与法线的夹角,不是与界面的夹角.
B、在理解反射定律时,不能片面认为就是反射角等于入射角、因为符合与入射角相等的直线有无数条,只有加上“反射光线,入射光线和法线在同一平面内,反射光线和入射光线分居法线两侧”,反射光线才能确定.
C、在反射现象中,光路是可逆的.
D、光线照射到光滑的平面上,产生镜面反射;照射到粗糙物体表面,产生漫反射、平行光线在粗糙面上发生漫反射时,虽然反射光线显得杂乱无章,但对每一条光线而言,都遵循反射定律.
光路的可逆性:当光线沿反射光线方向入射时,反射光线一定沿入射光线光方向反射.
3.平面镜成像:
像与物相对平面镜对称、等大、且为虚像.
关于像的问题:实像是物体发出的光会聚在一起而成的像.而虚像不是实际光线会聚在一起而成像的,而光沿直线传播的观念.认为逆着射来的光就可以找到物体,物体发出的光经过平面镜反射进入人眼中,平面镜中的是虚像.虚像是虚的,但人视网膜上像是实在的.
平面镜成像作图法:(1)利用对称性作图.(2)利用反射定律作图.
关于平面镜成像的教学建议
在初中阶段学习时只要求利用平面镜成像的规律进行作图,现在要求学生了解根据光的反射原理作图.
①平面镜成的是虚像,像与物等大,并且相对于镜面对称、这个结论在初中阶段由实验得出,现在可以利用几何方法证明.
②加深对虚像的理解,要让学生知道虚像不是由实际光线会聚而成,而是由镜面反射后的实际光线反向延长线会聚而成的、虚像不能用光屏接到,只能用眼睛直接观察.
③平面镜成像特点:
与物等大、正立的虚像,且物与像是关于镜面对称的
注意:虚像人眼能够看到,照相机也能拍摄
④平面镜不改变光线性质:具体是指:平行光线经平面镜反射后仍为平行光线、会聚光线经平面镜反射后仍为会聚光线、发散光线经平面镜反射后仍为发散光线
⑤平面镜成像作图法:
1)反射定律法:从物点作任意两光线射向平面镜,由反射定律作其反射光线,此两条反射光线的反向延长线交点即为虚像点.
2)对称法:先标出反射面,再找物点关于镇面的对称点即像的位置、由物点任意作两条入射光线,其反射光线的反向延长线必通过像点,实际“存在”的光线或实像用实线表示,并不真实“存在”的光线即反向延长线或虚像用虚线表示,实光线方向冠以箭头.通常为了保证准确、方便,常用第二种方法.
教学设计示例
光的反射、平面镜
(-)引入新课
上一节我们学习了光的直线传播,知道光在同一种均匀介质中是沿直线传播的,光在真空中的传播速度是3×108m/s,光在其他介质中也是沿直线传播的,只是其传播速度小于真空中光速,当光照到两种介质的交界面时,发生反射现象,光的反射现象,我们在初中也已经做过初步的学习,现在我们将进一步学习这一部分内容.
(二)教学过程
光的反射部分在内容上与初中没有太大的区别,所以可以先让学生思考自学,而后教师进行讲解和分析.教师可以将主要精力放在平面镜的成像上.
学生思考:
何为光的反射?
光的反射定律内容是什么?
列举光的反射现象.
漫反射和镜面反射的区别和联系.
平面镜成像的特点和规律.
平面镜成像做图.
教师讲解:
光的反射
1、人是怎样看见周围物体的?
物体发出的光(或物体被照明而反射出来的光)进入人的眼睛,并在视网膜上形成清晰的像,人根据这像来识别物体.
2.光的反射定律:
(1)反射光线、入射光线、法线在同一平面内.
(2)反射光线,入射光线在法线两侧.(3)反射角等于入射角.
A、入射角、反射角是指入射光线、反射光线与法线的夹角,不是与界面的夹角.
B、在理解反射定律时,不能片面认为就是反射角等于入射角、因为符合与入射角相等的直线有无数条,只有加上“反射光线,入射光线和法线在同一平面内,反射光线和入射光线分居法线两侧”,反射光线才能确定.
C、在反射现象中,光路是可逆的.
D、光线照射到光滑的平面上,产生镜面反射;照射到粗糙物体表面,产生漫反射、平行光线在粗糙面上发生漫反射时,虽然反射光线显得杂乱无章,但对每一条光线而言,都遵循反射定律.
光路的可逆性:当光线沿反射光线方向入射时,反射光线一定沿入射光线光方向反射.
3.平面镜成像:
像与物相对平面镜对称、等大、且为虚像.
关于像的问题:实像是物体发出的光会聚在一起而成的像.而虚像不是实际光线会聚在一起而成像的,而光沿直线传播的观念.认为逆着射来的光就可以找到物体,物体发出的光经过平面镜反射进入人眼中,平面镜中的是虚像.虚像是虚的,但人视网膜上像是实在的.
平面镜成像作图法:(1)利用对称性作图.(2)利用反射定律作图.
探究活动
1.制作:利用光的反射现象制作一只潜望镜.
2.调查生活中有关光的反射的应用情况.
3.利用光的反射知识解释生活中的有关现象.
高中教案力的合成【荐】
教学目标
知识目标
1、掌握力的平行四边形法则;
2、初步运用力的平行四边形法则求解共点力的合力;
3、会用作图法求解两个共点力的合力;并能判断其合力随夹角的变化情况,掌握合力的变化范围。
能力目标
1、能够通过实验演示归纳出互成角度的两个共点遵循平行四边形定则;
2、培养学生动手操作能力;
情感目标
培养学生的物理思维能力和科学研究的态度
教学建议
教学重点难点分析
1、本课的重点是通过实验归纳出力的平行四边形法则,这同时也是本章的重点.
2、对物体进行简单的受力分析、通过作图法确定合力是本章的难点;
教法建议
一、共点力概念讲解的教法建议
关于共点力的概念讲解时需要强调不仅作用在物体的同一点的力是共点力,力的作用线相交于一点的也叫共点力.注意平行力于共点力的区分(关于平行请参考扩展资料中的“平行与分解”),教师讲解示例中要避开这例问题.
二、关于矢量合成讲解的教法建议
本课的重点是通过实验归纳出力的平行四边形法则,这同时也是本章的重点.由于学生刚开始接触矢量的运算方法,在讲解中需要从学生能够感知和理解的日常现象和规律出发,理解合力的概念,从实验现象总结出规律,由于矢量的运算法则是矢量概念的核心内容,又是学习物理学的基础,对于初上高中的学生来说,是一个大的飞跃,因此教学时,教师需要注意规范性,但是不必操之过急,通过一定数量的题目强化学生对平行四边形定则的认识.
由于与分解的基础首先是对物体进行受力分析,在前面力的知识学习中,学生已经对单个力的分析过程有了比较清晰的认识,在知识的整合过程中,教师可以通过练习做好规范演示.
三、关于作图法求解几个共点力合力的教法建议
1、在讲解用作图法求解共点力合力时,可以在复习力的图示法基础上,让学生加深矢量概念的理解,同时掌握矢量的计算法则.
2、注意图示画法的规范性,在本节可以配合学生自主实验进行教学.
第四节与分解
教学设计过程:
一、复习提问:
1、什么是力?
2、力产生的效果跟哪些因素有关?
教师总结,并引出新课内容.
二、新课引入:
1、通过对初中学过的单个力产生的效果,与两个力共同作用的效果相同,引出共点力、合力和分力的概念,同时出示教学图片,如:两个人抬水、拉纤或拔河的图片.(图片可以参见多媒体素材中的图形图像)
2、提问1:已知同一直线上的两个力F1、F2的大小分别为50N、80N,如果两个力的方向相同,其合力大小是多少?合力的方向怎样?(教师讲解时注意强调:‘描述力的时候,要同时说明大小和方向,体现力的矢量性’)
3、提问2、进一步在问题1的基础上提问,若F1、F2的两个力的方向相反,其合力大小是多少?合力的方向怎样?
教师引导学生得到正确答案后,总结出“同一直线上二力合成”的规律:
物体受几个力共同作用,我们可以用一个力代替这几个力共同作用,其效果完全相同,这个力叫那几个力的合力.已知几个力,求它们的合力叫.
指明:
(1)、同一直线上,方向相同的两个力的合力大小等于这两个力大小之和,方向跟这两个力的方向相同.
(2)、同一直线上,方向相反的两个力的合力大小等于这两个力大小之差,合力的方向跟较大的力方向相同.
4、提问3、若两个力不在同一直线上时,其合力大小又是多少?合力的方向怎样?
教师出示投影和图片:两个学生抬水对比一个同学抬水,让学生考虑:一个力的效果与两个力的效果相同,考虑一下是否“合力总比分力大”?
5、教师可以通过平行四边形定则演示器演示与分解实验(演示实验可以参考多媒体素材中的视频文件);
演示1:将橡皮筋固定在A点,演示用两个力F1、F2拉动橡皮筋到O点,再演示用F力将橡皮筋拉到O点,对比两次演示结果,运用力的图示法将力的大小方向表示出来,为了让学生更好的获得和理解力的平行四边性法则,在实验前,教师可以设计F1、F2的大小为3N和4N,两个力的夹角为90度,这样数学计算比较简单,学生很容易会发现F1、F2和F的关系满足勾股定理,进而得到力的平行四边性定则,教师总结:两个互成角度的力的合力,可以用表示这两个力的线段作邻边,作平行四边形,所夹的对角线就表示合力的大小和方向.
.
6、学生可以通过分组实验来验证力的平行四边性定则(可以参考多媒体资料中的视频试验):
试验器具:一块方木板,八开白纸两张,大头钉若干,弹簧秤两个,橡皮筋一个,细线若干,直尺两个,
学生在教师的知道下,组装好试验设备,进行试验验证.
强调:需要记录的数据(弹簧秤的示数)和要作的标记(橡皮筋两次拉到的同一位置和两个分力的方向)
7、教师总结:经过人们多次的、精细的试验,最后确认,对角线的长度、方向,跟合力的大小、方向一致,即对角线与合力重合,力和合成满足平行四边形法则.
8、让学生根据书中的提示自己推倒出合力与分力之间的关系式.
三、课堂小结
探究活动
关于“滑轮”问题的研究
题目
关于“滑轮”问题的研究
内容
在初中学习的有关滑轮问题后,对“定”、“动”滑轮作用的理解,尤其是动滑轮的使用时,是否一定省力?研究一下初中的物理课本,在什么条件下,应用动滑轮省力最多?观察生活中应用滑轮的实例,说出自己的心得,或以书面形式写出相关内容以及研究结果.
高中教案光电效应【荐】
教学目标
知识目标
(1)知道光电效应现象
(2)知道光子说的内容,会计算光子频率与能量间的关系
(3)会简单地用光子说解释光电效应现象
(4)知道光电效应现象的一些简单应用
能力目标
培养学生分析问题的能力
教学建议
教材分析
分析一:课本中先介绍光电效应现象,再学习光子说,最后用光子说解释光电效应现象产生的原因。本节内容说明光具有粒子性,从而引出量子论的基本知识。
分析二:光电效应有如下特点:①光电效应在极短的时间内完成;②入射光的频率大于金属的极限频率才会发生光电效应现象;③在已经发生光电效应的条件下,逸出的光电子的数量跟入射光的强度成正比;④在已经发生光电效应的条件下,光电子的最大初动能随入射光频率的增大而增大。
教法建议
建议一:对于光电效应现象先要求学生记住光电效应的实验现象,然后运用光子说去解释它,这样可以加深学生的理解。
建议二:学生应该会根据逸出功求发生光电效应的极限频率,但可以不要求运用爱因斯坦光电效应方程进行计算。
教学设计示例光电效应、光子
教学重点:光电效应现象
教学难点:运用光子说解释光电效应现象
示例:
一、光电效应
1、演示光电效应实验,观察实验现象
2、在光的照射下物体发射光子的现象叫光电效应
3、现象:
(1)光电效应在极短的时间内完成;
(2)入射光的频率大于金属的极限频率才会发生光电效应现象;
(3)在已经发生光电效应的条件下,逸出光电子的数量跟入射光的强度成正比;
(4)在已经发生光电效应的条件下,光电子最大初动能随入射光频率的增大而增大。
4、学生看书上表格常见金属发生光电效应的极限频率
5、提出问题:为什么会发生3中的现象
二、光子说
1、普朗克的量子说
2、爱因斯坦的光子说
在空间传播的光不是连续的,而是一份份的,每一份叫做光量子,简称光子。
三、用光子说解释光电效应现象
先由学生阅读课本上的解释过程,然后教师提出问题,由学生解释。
四、光电效应方程
1、逸出功
2、爱因斯坦光电效应方程
对一般学生只需简单介绍
对层次较好的学生可以练习简单计算,深入理解方程的意义
例题:用波长200nm的紫外线照射钨的表面,释放出的光电子中最大的动能是2.94eV.用波长为160nm的紫外线照射钨的表面,释放出来的光电子的最大动能是多少?
五、光电效应的简单应用
六、作业
探究活动
题目:光电效应的应用
组织:分组
方案:分组利用光电二极管的特性制作小发明
评价:可操作性、创新性、实用性