【www.jk251.com - 加强思想道德建设】
教师上课前最好是准备一份教案,通过不断的写教案,我们可以提高自己的语言组织能力,要想在教学中不断进取,其秘诀之一就是编写好教案。怎样才能写好教案?小编为大家收集整理了小学美育与未成年人思想道德建设研究课题研究方案 关于教案的范文精选,希望能够帮助到您。
小学《美育与未成年人思想道德建设研究》课题研究方案
执笔:z
一、问题的提出
切实加强和改进未成年人思想道德建设,是我们党从推进新世纪新阶段和国家事业发展、实现党和国家长治久安出发,作出的一项重大决策。中央这一英明决策,成为了全党和各级领导的共识,尤其是教育部门的重视。各级各类学校为加强未成年人的思想道德建设进行了很多有效的探索,其中以美育为切入口,进行思想道德教育就是一大创新。
未成年人是祖国未来的建设者,是中国特色社会主义事业的接班人。我们祖国明天美好未来的创造要依靠一代高素质的新人。我们面对的21世纪是一个不断发展的新世纪,是一个充满挑战的新世纪。由于我国尚属发展中国家,在审美教育方面还有许多欠缺。我们一直认为,审美教育是我国所有教育环节中最为薄弱的环节,我们需要不断加强美育教育工作。新中国成立后,国家对美育发展采取了一系列重要措施,在原有基础上取得非常明显的成绩。特别是改革开放以来,对美育的探索,对思想道德的研究,已经提到了一个极具重要的高度,可见,在学校开展美育与未成年人思想道德建设的研究,对未成年人施行科学的、系统的美育教育,让他们学会生存,学会审美的生存,能有效地促使未成年人思想道德水平的提升,德、智、体、美、劳诸方面的内在统一,成为全面和谐发展的一代新人。
目前,我国18岁以下的未成年人约有3.67亿。当前,一些领域诚信缺失、假冒伪劣、欺骗欺诈活动蔓延,一些地方封建迷信、邪教和黄赌毒等社会丑恶现象沉渣泛起,一些成年人价值观发生了扭曲,互联网等新兴媒体快速发展的同时,腐朽落后文化和有害信息也伴随涌入,所有这些,都给未成年人的心灵带来了极大的腐蚀,给他们的成长带来不可忽视的负面影响。他们感到迷茫,是与非,真与假,美与丑,无从辨别,进而便不加辨别。作为未成年人思想道德教育主渠道的中小学校,如何以美育为引领,用美的光辉去驱逐未成年人心中的阴霾,让美的种子在未成年人心中生根,开出真善美之花、结出真善美之果,是摆在所有教育工作者面前的重大而严峻的课题。基于此我们提出了美育与未成年人思想道德这一研究课题。力求掘弃单调枯燥说教的德育模式,提倡晓之以理,动之以情,寓教育于形式多样,丰富多彩的活动之中,让德育提出的各种内容在人的心灵的整体美化中去实现。
二、课题界定
美育是介于美学、教育学、心理学之间的一门交叉边缘学科。美育的目的是实现未成年人思想、道德、情感、意志等符合实践能力的全面发展。它与美学的基本问题密不可分,但范围更广,涉及更多。美育是艺术教育、心灵教育、情感教育,是未成年人思想道德教育的重要组成部分。
三、研究假设
把美育作为德育工作的一个切入口,以美促德,施行系统的、科学的审美教育,塑造学生的完善人格,提高他们的思想道德品质。
四、研究目标与内容
1、探索美育与德育的内在关系,寻求以美促德的规律,创新德育新模式。2、探索学校美育的途径,通过美育,让学生感受美、欣赏美,提高学生表现美、心灵美、创造美的能力,促进学生形成良好的思想道德品质。
五、理论依据
(一)政策法规:
1、中央关于《中国教育改革和发展纲要》指出:美育对于培养学生健康的审美观和审美能力,陶冶高尚的道德情操,培养全面发展的人才,具有重要的作用可见美育在加强德育功能中有着举足轻重的作用。
2、中央关于《深化教育改革全面推进素质教育的决定》中也明确指出:美育不仅能陶冶情操、提高素养,而且有助于开发智力,对于促进学生全面发展具有不可替代的作用。要尽快改变学校美育工作薄弱的状况,将美育融入学校教育全过程。在学校通过美育来加强未成年人思想道德教育是刻不容缓的。
3、中央《关于进一步加强和改进未成年人思想道德建设的若干意见》对教育原则提出了深入浅出,寓教于乐多用喜闻乐见的形式来增强工作的针对性和实效性。通过美育来加强德育正好符合中央这一精神。
(二)教育理论:
1、古代大教育家孔子认为:乐可以陶冶人的性情。人的品性兴于诗,立于礼,成于乐。礼、乐二字,是中国封建社会对行为美与艺术美以及两者关系统一的高度概括,也是美育的最高准则。
2、近代美学家教育家蔡元培认为:美育者,应用美学之理论于教育,以陶冶感情为目的者也。蔡元培提出以美育代宗教,试图以一种更富于感情因而也更符合人性的方法去陶冶人们的心灵,提高民族的素质。这无疑是科学的、进步的。以美育促进德育正是继承了蔡元培先生的教育思想。
3、苏霍姆林斯基认为:要实现全面发展,就要使智育、体育、德育、劳动教育和审美教育深入地相互渗透和相互交织,使这几方面教育呈现为一个统一的完整过程。由此可见德育与美育等教育之间的内在关系,美育在德育教育中具有重要地位。
六、研究原则
1、主体性原则:学生是教育的主体。坚持以人为本,一切从有利于学生的发展出发,所有美育活动的开展,都要以学生为主体。学校要依照青少年学生的认识规律、品德形成规律,循序渐进地安排美育内容和要求,要改进教学形式和方法,提高美育效果。学校开设的其他学科课程都要结合自身特点,有机地将美育工作渗透其中。
2、协同性原则:思想教育是一个系统工程。由各要素组成,各要素之间具有协调、合作、同步、互补的作用。以美促德,就是体现了协同发展的原则。因此要在本课题研究中遵循这一原则。
3、创造性原则:未来教育正越来越成为创新教育。在美育教育过程中爱护学生的好奇心,尊重学生的主体性,让学生在欣赏美、表现美过程中,能够从生活中的事物,从自我的亲身体验,从已获得的知识中去创造美,从而培养学生的创造性,鼓励学生在智力、能力、道德、审美等方面全面发展。
七、研究方法
本课题研究以行动研究为主,辅以调查法、活动法、观察法和总结
Jk251.coM编辑推荐
“小学绿色生态教育研究”课题实施计划精选
小学绿色生态教育研究课题实施计划
屯东小学绿色生态教育课题组
课题名称:小学绿色生态教育研究
研究目标:
通过实践让学生热爱绿色,创造绿色;让学生了解身边环境的现状,学会怎么样去保护环境;了解地球生态状况,用行动去让身边的生物变得更多姿多彩;从用水用电开始,学会如何节约能源,并有良好利用能源的意识,培养学生观察、动手综合实践等能力;形成学校教育特色。
本学期研究内容:
1、继续引导学生感受大自然的美妙及环保现状,产生对环境的尊重和热爱感,及保护环境的强烈愿望。
2、进一步加强对学生的生态平衡的教育,让小学生懂得生物多样性的意义,把学生的道德关怀引入到人与自然的关系中,树立学生对自然的道德义务感,养成良好的生态德性,促进他们从一个号令自然的主人,转变为一个善待自然的伙伴。
3、引导学生生活中养成节约能源的好习惯,形成充分利用资源的意识。
4、通过各学科的教学渗透以及各种丰富多彩的实践活动,让学生更全面、客观的认识和理解绿色生态的知识,并能初步将这些知识内化为自己的思想意识,进而培养他们综合能力的发展,在学习活动中形成自主探究、合作学习、创新发展的良好品质。并达到教育好一个学生,带动一个家庭,影响整个社会的目的,将学校的德育扩展到家庭、社会。
本期具体措施:
1、打好课题研究的基础。认真组织好固定的研究人员及课题组老师们,学习综合实践活动和品社课程标准,及《研究性学习导论》《综合实践活动课程教师指南》,并制定严密的课题研究管理制度这是课题研究的重要基础和得以开展的重要保证。
2、从小处入手,让绿色理念潜移默化地渗入学生的心田。坚持每周大扫除,时时有值日生的环境卫生制度,使学生养成爱卫生、讲卫生、保持卫生、珍惜环境的良好卫生习惯;学校定期开展文明礼貌月活动、弯腰行动等,培养学生养成良好的文明卫生习惯,较高的环境意识和良好的环境道德行为。
3、用课堂和活动全方位开展环境教育。课堂渗透是我校生态教育的主要方式。结合本校实际,学校开有专门的《校本课程》和《综合实践》课程,对低、中、高年级分别进行常见植物的认识、各种植物的认识和保护实践、植物的保护实践活动开展的教育和指导。同时指导中、高年级学生制作简单的标本和环保作品,如环保科技小制作、植物标本等。
4、加强校园环境建设,突现其教育功能。利用橱窗、黑板报、宣传标语牌、横幅等,营造浓郁的宣传气氛,定期制作专题图片展,组织学生出版环保宣传专刊。学校红领巾广播开办固定栏目,及时反馈学校中存在的不环保、不文明现象,使之成为学校环境宣传教育的一道亮丽的风景。
5、走出校园,实施社区教育,扩大环境教育的成果。组织同学们净化、绿化校园,利用节假日组织同学走上街头、居委、福利院进行卫生清扫和环保宣传活动。以学生的实际行动,唤醒人人都来爱护环境。
6、在实施学期活动的过程中,不断总结经验,寻找提高活动效率的好方法,撰写活动反思。
课题实施步骤:
九月份:
1、思考和设计本校课题本学期具体实施计划。
2、教材研究,寻找实验年段教学的最佳契合点。
十月份:
1、制定课题管理研究管理制度;
2、继续以我喜爱的植物为活动大主题;
3、选择典型的教学内容,请专家指导,开展研讨活动。
十一、十二月份:
1、组织固定的研究人员及课题组老师学习和教研。
2、按照计划有步骤地实施,及时反思和交流。
一月份:
1、课题总结;
2、材料归档。
材料规整:
1、管理制定及课题组成员名单;
2、各实验老师活动计划表;
3、各年段活动明细表及相关资料;
4、课题研讨纪录、学习笔记;
5、《校本课程》、《综合实践》的教学设计、教学反思等。
芙蓉区屯东小学
研究性课题与实习作业--精选版
教学目标
(1)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(2)了解线性规化问题的图解法;
(3)培养学生搜集、分析和整理信息的能力,在活动中学会沟通与合作,培养探索研究的能力和所学知识解决实际问题的能力;
(4)引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.
教学建议
一、重点难点分析
学以致用,培养学生“用数学”的意识是本节的重要目的。学习线性规划的有关知识其最终目的就是运用它们去解决一些生产、生活中问题,因而本节的教学重点是:线性规划在实际生活中的应用。困难大多是如何把实际问题转化为数学问题(既数学建模),所以把一些生产、生活中的实际问题转化为线性规划问题,就是本节课的教学难点。突破这个难点的关键就在于尽快熟悉生活,了解实际情况,并与所学知识紧密结合起来。
二、教法建议
(l)建议可适当采用电脑多媒体和投影仪等先进手段来辅助教学,以增加课堂容量,增强直观性,进而提高课堂效率.
(2)课堂上可以设计几个实际让学生分组研讨解答,一方面是复习线性规划问题的一般解法,为总结线性规划问题的数学模型和常见类型作铺垫;另一方面,也为接下来到外面分组调研积累经验,让学生在讨论、探究过程中初步学会沟通与合作,共同完成活动任务.
(3)确定研究课题,建议各小组以三个常见问题为主,或者根据本小组实际自拟课题.
(4)活动安排,建议要求各小组分式明确,团结协作,听从指挥,注意安全.学生研究活动的成果,可以用研究报告或论文的形式体现.一切以学生自己的自主探究活动为主,教师不能越俎代庖.
(5)对学生在课余时间开展的研究性课题,建议作做好成果展示、评估和交流.展示不仅可以让全体学生来分享成果,享受成功的喜悦,而且还可以锻炼学生的组织表达能力,增强学生的自信心.通过评估,可以使同学清楚地看到自己的优点与不足.通过交流研讨,分享成果,进行思维碰撞,使认识和情感得到提升.
教学设计方案
教学目标
(1)了解线性规划的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(2)了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;
(3)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;
(4)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.
重点难点
理解二元一次不等式表示平面区域是教学重点。
如何扰实际问题转化为线性规划问题,并给出解答是教学难点。
教学步骤
(一)引入新课
我们已研究过以二元一次不等式组为约束条件的二元线性目标函数的线性规划问题。那么是否有多个两个变量的线性规划问题呢?又什么样的问题不用线性规划知识来解决呢?
(二)线性规划问题的教学模型
线性规划研究的是线性目标函数在线性约束条件下取最大值或最小值问题,一般地,线性规划问题的数字模型是
已知其中都是常数,是非负变量,求的最大值或最小值,这里是常量。
前面我们计论了两个变量的线性规划问题,这类问题可以用图解法来求最优解,涉及更多变量的线性规划问题不能用图解法求解。比如线性不等式不能用图形来表示它,那么对四元线性规划问题就不能用图形来求解了,对这样的线性规划问题怎样求解,同学们今后在大学学习中会得到解决。
线性规划在实际中的应用
线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务,常见问题有:
1.物调运问题
例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调运方案,能使总运费最小?
2.产品安排问题
例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,能使每月获得的总利润最大?
3.下料问题
例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?
4.研究一个例子
下面的问题,能否用线性规划求解?如能,请同学们解出来。
某家具厂有方木料,五合板,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料、五合板,生产每个书橱需要方木料、五合板,出售一张书桌可获利润80元,出售一个书橱可获利润120元,如果只安排生产书桌,可获利润多少?如何只安排生产书橱,可获利润多少?怎样安排生产时可使所得利润最大?
A.教师指导同学们逐步解答:
(1)先将已知数据列成下表
(2)设生产书桌x张,生产书橱y张,获利润为z元。
分析:显然这是一个二元线性问题,可归结于线性规划问题,并可用图解法求解。
(3)目标函数
①在第一个问题中,即只生产书桌,则,约束条件为
∴最多生产300张书桌,获利润元
这样安排生产,五合板先用光,方木料只用了,还有没派上用场。
②在第二个问题中,即只生产书橱,则,约束条件是
∴最多生产600张书橱,获利润元
这样安排生产,五合板也全用光,方木料用去了,仍有没派上用场,获利润比只生产书桌多了48000元。
③在第三个问题中,即怎样安排生产,可获利润最大?
,约束条件为
对此,我们用图解法求解,
先作出可行域,如图阴影部分。
时得直线与平行的直线过可行域内的点M(0,600)。因为与平等的过可行域内的点的所有直线中,距原点最远,所以最优解为,即此时
因此,只生产书橱600张可获得最大利润,最大利润是72000元。
B.讨论
为什么会出现只生产书橱,可获最大利润的情形呢?第一,书橱比书桌价格高,因此应该尽可能多生产书橱;第二,生产一张书橱只需要五合板,生产一张书桌却需要五合板,按家具厂五合板的存有量,可生产书橱600张,若同时又生产书桌,则生产一张书桌就要减少两张书橱,显然这不合算;第三,生产书橱的另种材料,即方木料是足够供应的,家具厂方木料存有量为,而生产600张书橱只需要方木料。
这是一个特殊的线性规划问题,再来研究它的解法。
C.改变这个例子的个别条件,再来研究它的解法。
将这个例子中方木料存有量改为,其他条件不变,则
M(100,400)而平行于的直线离原点的距离最大,所以最优解为(100,400),这时(元)。
论文,并互相交流。
探究活动
如何确定水电站的位置
小河同侧有两个村庄A,B,两村庄计划于河上共建一水电站发电供两村使用.已知A,B两村到河边的垂直距离分别为300m和700m,且两村相距500m,问水电站建于何处,送电到两村电线用料最省?
[解]视两村庄为两点A,B,小河为一条直线L,原问题便转化成在直线上找一点P,使P点到A,B两点距离之和为最小的问题.
以L所在直线为轴,轴通过A点建立直角坐标系,如图所示.作A关于轴的对称点,连,与轴交于点P.由平面几何知识得,点P即为所求.据已知条件,A(0,300),(0,-300).过B作轴于点,过A作,于点H.
由,,得B(300,700).于是直线的方程为
即
所以P点的坐标即为与轴的交点(90,0),即水电站应建在河边两村间且离A村距河边的最近点90m的地方
研究性课题与实习作业:线性规划的实际应用
研究性课题与实习作业【荐】
教学目标
(1)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(2)了解线性规化问题的图解法;
(3)培养学生搜集、分析和整理信息的能力,在活动中学会沟通与合作,培养探索研究的能力和所学知识解决实际问题的能力;
(4)引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.
教学建议
一、重点难点分析
学以致用,培养学生“用数学”的意识是本节的重要目的。学习线性规划的有关知识其最终目的就是运用它们去解决一些生产、生活中问题,因而本节的教学重点是:线性规划在实际生活中的应用。困难大多是如何把实际问题转化为数学问题(既数学建模),所以把一些生产、生活中的实际问题转化为线性规划问题,就是本节课的教学难点。突破这个难点的关键就在于尽快熟悉生活,了解实际情况,并与所学知识紧密结合起来。
二、教法建议
(l)建议可适当采用电脑多媒体和投影仪等先进手段来辅助教学,以增加课堂容量,增强直观性,进而提高课堂效率.
(2)课堂上可以设计几个实际让学生分组研讨解答,一方面是复习线性规划问题的一般解法,为总结线性规划问题的数学模型和常见类型作铺垫;另一方面,也为接下来到外面分组调研积累经验,让学生在讨论、探究过程中初步学会沟通与合作,共同完成活动任务.
(3)确定研究课题,建议各小组以三个常见问题为主,或者根据本小组实际自拟课题.
(4)活动安排,建议要求各小组分式明确,团结协作,听从指挥,注意安全.学生研究活动的成果,可以用研究报告或论文的形式体现.一切以学生自己的自主探究活动为主,教师不能越俎代庖.
(5)对学生在课余时间开展的研究性课题,建议作做好成果展示、评估和交流.展示不仅可以让全体学生来分享成果,享受成功的喜悦,而且还可以锻炼学生的组织表达能力,增强学生的自信心.通过评估,可以使同学清楚地看到自己的优点与不足.通过交流研讨,分享成果,进行思维碰撞,使认识和情感得到提升.
教学设计方案
教学目标
(1)了解线性规划的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(2)了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;
(3)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;
(4)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.
重点难点
理解二元一次不等式表示平面区域是教学重点。
如何扰实际问题转化为线性规划问题,并给出解答是教学难点。
教学步骤
(一)引入新课
我们已研究过以二元一次不等式组为约束条件的二元线性目标函数的线性规划问题。那么是否有多个两个变量的线性规划问题呢?又什么样的问题不用线性规划知识来解决呢?
(二)线性规划问题的教学模型
线性规划研究的是线性目标函数在线性约束条件下取最大值或最小值问题,一般地,线性规划问题的数字模型是
已知其中都是常数,是非负变量,求的最大值或最小值,这里是常量。
前面我们计论了两个变量的线性规划问题,这类问题可以用图解法来求最优解,涉及更多变量的线性规划问题不能用图解法求解。比如线性不等式不能用图形来表示它,那么对四元线性规划问题就不能用图形来求解了,对这样的线性规划问题怎样求解,同学们今后在大学学习中会得到解决。
线性规划在实际中的应用
线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务,常见问题有:
1.物调运问题
例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调运方案,能使总运费最小?
2.产品安排问题
例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,能使每月获得的总利润最大?
3.下料问题
例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?
4.研究一个例子
下面的问题,能否用线性规划求解?如能,请同学们解出来。
某家具厂有方木料,五合板,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料、五合板,生产每个书橱需要方木料、五合板,出售一张书桌可获利润80元,出售一个书橱可获利润120元,如果只安排生产书桌,可获利润多少?如何只安排生产书橱,可获利润多少?怎样安排生产时可使所得利润最大?
A.教师指导同学们逐步解答:
(1)先将已知数据列成下表
(2)设生产书桌x张,生产书橱y张,获利润为z元。
分析:显然这是一个二元线性问题,可归结于线性规划问题,并可用图解法求解。
(3)目标函数
①在第一个问题中,即只生产书桌,则,约束条件为
∴最多生产300张书桌,获利润元
这样安排生产,五合板先用光,方木料只用了,还有没派上用场。
②在第二个问题中,即只生产书橱,则,约束条件是
∴最多生产600张书橱,获利润元
这样安排生产,五合板也全用光,方木料用去了,仍有没派上用场,获利润比只生产书桌多了48000元。
③在第三个问题中,即怎样安排生产,可获利润最大?
,约束条件为
对此,我们用图解法求解,
先作出可行域,如图阴影部分。
时得直线与平行的直线过可行域内的点M(0,600)。因为与平等的过可行域内的点的所有直线中,距原点最远,所以最优解为,即此时
因此,只生产书橱600张可获得最大利润,最大利润是72000元。
B.讨论
为什么会出现只生产书橱,可获最大利润的情形呢?第一,书橱比书桌价格高,因此应该尽可能多生产书橱;第二,生产一张书橱只需要五合板,生产一张书桌却需要五合板,按家具厂五合板的存有量,可生产书橱600张,若同时又生产书桌,则生产一张书桌就要减少两张书橱,显然这不合算;第三,生产书橱的另种材料,即方木料是足够供应的,家具厂方木料存有量为,而生产600张书橱只需要方木料。
这是一个特殊的线性规划问题,再来研究它的解法。
C.改变这个例子的个别条件,再来研究它的解法。
将这个例子中方木料存有量改为,其他条件不变,则
M(100,400)而平行于的直线离原点的距离最大,所以最优解为(100,400),这时(元)。
论文,并互相交流。
探究活动
如何确定水电站的位置
小河同侧有两个村庄A,B,两村庄计划于河上共建一水电站发电供两村使用.已知A,B两村到河边的垂直距离分别为300m和700m,且两村相距500m,问水电站建于何处,送电到两村电线用料最省?
[解]视两村庄为两点A,B,小河为一条直线L,原问题便转化成在直线上找一点P,使P点到A,B两点距离之和为最小的问题.
以L所在直线为轴,轴通过A点建立直角坐标系,如图所示.作A关于轴的对称点,连,与轴交于点P.由平面几何知识得,点P即为所求.据已知条件,A(0,300),(0,-300).过B作轴于点,过A作,于点H.
由,,得B(300,700).于是直线的方程为
即
所以P点的坐标即为与轴的交点(90,0),即水电站应建在河边两村间且离A村距河边的最近点90m的地方
研究性课题与实习作业:线性规划的实际应用
研究性课题与实习作业【推荐】
教学目标
(1)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(2)了解线性规化问题的图解法;
(3)培养学生搜集、分析和整理信息的能力,在活动中学会沟通与合作,培养探索研究的能力和所学知识解决实际问题的能力;
(4)引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.
教学建议
一、重点难点分析
学以致用,培养学生“用数学”的意识是本节的重要目的。学习线性规划的有关知识其最终目的就是运用它们去解决一些生产、生活中问题,因而本节的教学重点是:线性规划在实际生活中的应用。困难大多是如何把实际问题转化为数学问题(既数学建模),所以把一些生产、生活中的实际问题转化为线性规划问题,就是本节课的教学难点。突破这个难点的关键就在于尽快熟悉生活,了解实际情况,并与所学知识紧密结合起来。
二、教法建议
(l)建议可适当采用电脑多媒体和投影仪等先进手段来辅助教学,以增加课堂容量,增强直观性,进而提高课堂效率.
(2)课堂上可以设计几个实际让学生分组研讨解答,一方面是复习线性规划问题的一般解法,为总结线性规划问题的数学模型和常见类型作铺垫;另一方面,也为接下来到外面分组调研积累经验,让学生在讨论、探究过程中初步学会沟通与合作,共同完成活动任务.
(3)确定研究课题,建议各小组以三个常见问题为主,或者根据本小组实际自拟课题.
(4)活动安排,建议要求各小组分式明确,团结协作,听从指挥,注意安全.学生研究活动的成果,可以用研究报告或论文的形式体现.一切以学生自己的自主探究活动为主,教师不能越俎代庖.
(5)对学生在课余时间开展的研究性课题,建议作做好成果展示、评估和交流.展示不仅可以让全体学生来分享成果,享受成功的喜悦,而且还可以锻炼学生的组织表达能力,增强学生的自信心.通过评估,可以使同学清楚地看到自己的优点与不足.通过交流研讨,分享成果,进行思维碰撞,使认识和情感得到提升.
教学设计方案
教学目标
(1)了解线性规划的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(2)了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;
(3)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;
(4)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.
重点难点
理解二元一次不等式表示平面区域是教学重点。
如何扰实际问题转化为线性规划问题,并给出解答是教学难点。
教学步骤
(一)引入新课
我们已研究过以二元一次不等式组为约束条件的二元线性目标函数的线性规划问题。那么是否有多个两个变量的线性规划问题呢?又什么样的问题不用线性规划知识来解决呢?
(二)线性规划问题的教学模型
线性规划研究的是线性目标函数在线性约束条件下取最大值或最小值问题,一般地,线性规划问题的数字模型是
已知其中都是常数,是非负变量,求的最大值或最小值,这里是常量。
前面我们计论了两个变量的线性规划问题,这类问题可以用图解法来求最优解,涉及更多变量的线性规划问题不能用图解法求解。比如线性不等式不能用图形来表示它,那么对四元线性规划问题就不能用图形来求解了,对这样的线性规划问题怎样求解,同学们今后在大学学习中会得到解决。
线性规划在实际中的应用
线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务,常见问题有:
1.物调运问题
例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调运方案,能使总运费最小?
2.产品安排问题
例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,能使每月获得的总利润最大?
3.下料问题
例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?
4.研究一个例子
下面的问题,能否用线性规划求解?如能,请同学们解出来。
某家具厂有方木料,五合板,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料、五合板,生产每个书橱需要方木料、五合板,出售一张书桌可获利润80元,出售一个书橱可获利润120元,如果只安排生产书桌,可获利润多少?如何只安排生产书橱,可获利润多少?怎样安排生产时可使所得利润最大?
A.教师指导同学们逐步解答:
(1)先将已知数据列成下表
(2)设生产书桌x张,生产书橱y张,获利润为z元。
分析:显然这是一个二元线性问题,可归结于线性规划问题,并可用图解法求解。
(3)目标函数
①在第一个问题中,即只生产书桌,则,约束条件为
∴最多生产300张书桌,获利润元
这样安排生产,五合板先用光,方木料只用了,还有没派上用场。
②在第二个问题中,即只生产书橱,则,约束条件是
∴最多生产600张书橱,获利润元
这样安排生产,五合板也全用光,方木料用去了,仍有没派上用场,获利润比只生产书桌多了48000元。
③在第三个问题中,即怎样安排生产,可获利润最大?
,约束条件为
对此,我们用图解法求解,
先作出可行域,如图阴影部分。
时得直线与平行的直线过可行域内的点M(0,600)。因为与平等的过可行域内的点的所有直线中,距原点最远,所以最优解为,即此时
因此,只生产书橱600张可获得最大利润,最大利润是72000元。
B.讨论
为什么会出现只生产书橱,可获最大利润的情形呢?第一,书橱比书桌价格高,因此应该尽可能多生产书橱;第二,生产一张书橱只需要五合板,生产一张书桌却需要五合板,按家具厂五合板的存有量,可生产书橱600张,若同时又生产书桌,则生产一张书桌就要减少两张书橱,显然这不合算;第三,生产书橱的另种材料,即方木料是足够供应的,家具厂方木料存有量为,而生产600张书橱只需要方木料。
这是一个特殊的线性规划问题,再来研究它的解法。
C.改变这个例子的个别条件,再来研究它的解法。
将这个例子中方木料存有量改为,其他条件不变,则
作出可行域,如图阴影部分,且过可行域内点M(100,400)而平行于的直线离原点的距离最大,所以最优解为(100,400),这时(元)。
故生产书桌100、书橱400张,可获最大利润56000元。
总结、扩展
1.线性规划问题的数字模型。
2.线性规划在两类问题中的应用
布置作业
到附近的工厂、乡镇企业、商店、学校等作调查研究,了解线性规划在实际中的应用,或提出能用线性规划的知识提高生产效率的实际问题,并作出解答。把实习和研究活动的成果写成实习报告、研究报告或小论文,并互相交流。
探究活动
如何确定水电站的位置
小河同侧有两个村庄A,B,两村庄计划于河上共建一水电站发电供两村使用.已知A,B两村到河边的垂直距离分别为300m和700m,且两村相距500m,问水电站建于何处,送电到两村电线用料最省?
[解]视两村庄为两点A,B,小河为一条直线L,原问题便转化成在直线上找一点P,使P点到A,B两点距离之和为最小的问题.
以L所在直线为轴,轴通过A点建立直角坐标系,如图所示.作A关于轴的对称点,连,与轴交于点P.由平面几何知识得,点P即为所求.据已知条件,A(0,300),(0,-300).过B作轴于点,过A作,于点H.
由,,得B(300,700).于是直线的方程为
即
所以P点的坐标即为与轴的交点(90,0),即水电站应建在河边两村间且离A村距河边的最近点90m的地方
研究性课题与实习作业:线性规划的实际应用
阳朝小学数学课题研究计划(精选教案)
阳朝小学数学课题研究计划
主研人:z
一、任教学科:数学
二、研究的课题:美育与未成年人思想道德建设研究
三、研究目的:
通过研究学校美育和德育的关系,提高学生的审美素质和道德素质,完善学生的心理结构。
四、课题研究的主要内容:
在数学课堂教学中创设有利于学生审美能力提高的情境,通过美育促进学生德育的健康发展。探索美育与德育的内在关系,寻求以美促德的规律,创新德育新模式。
五、研究措施:
1、认真系统地学习有关的理论。认真地学习一些相关的专著和他人的经验性文章,在学习中提高认识,在学习中转变陈旧的观念。
2、努力提高自身专业素养,建立自己的课题博客专栏。尽可能多地与同行们交流探讨。必须下大力气,投入足够的时间和精力学习并经常性运用多媒体教学手段,提高自身运用现代教育技术能力。
3、认真备课、精心设计作业,进行踏实细致地调查分析。
4、注重课题研究过程,在学校研究计划安排下,积极参与课题研讨课的上课、听课和评课工作。主动与全组成员一起探讨成败得失,提高自己的理解和研究能力。
六、工作安排:
(1)
(2)制定个人课题研究计划。
(3)参加课题培训学习。
(4)积极参与课题组开展的课题研讨课、示范课的听评课等校本教研活动。
(5)注意及时收集、整理、上传资料。
高中教案研究性课题与实习作业【荐】
教学目标
(1)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(2)了解线性规化问题的图解法;
(3)培养学生搜集、分析和整理信息的能力,在活动中学会沟通与合作,培养探索研究的能力和所学知识解决实际问题的能力;
(4)引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.
教学建议
一、重点难点分析
学以致用,培养学生“用数学”的意识是本节的重要目的。学习线性规划的有关知识其最终目的就是运用它们去解决一些生产、生活中问题,因而本节的教学重点是:线性规划在实际生活中的应用。困难大多是如何把实际问题转化为数学问题(既数学建模),所以把一些生产、生活中的实际问题转化为线性规划问题,就是本节课的教学难点。突破这个难点的关键就在于尽快熟悉生活,了解实际情况,并与所学知识紧密结合起来。
二、教法建议
(l)建议可适当采用电脑多媒体和投影仪等先进手段来辅助教学,以增加课堂容量,增强直观性,进而提高课堂效率.
(2)课堂上可以设计几个实际让学生分组研讨解答,一方面是复习线性规划问题的一般解法,为总结线性规划问题的数学模型和常见类型作铺垫;另一方面,也为接下来到外面分组调研积累经验,让学生在讨论、探究过程中初步学会沟通与合作,共同完成活动任务.
(3)确定研究课题,建议各小组以三个常见问题为主,或者根据本小组实际自拟课题.
(4)活动安排,建议要求各小组分式明确,团结协作,听从指挥,注意安全.学生研究活动的成果,可以用研究报告或论文的形式体现.一切以学生自己的自主探究活动为主,教师不能越俎代庖.
(5)对学生在课余时间开展的研究性课题,建议作做好成果展示、评估和交流.展示不仅可以让全体学生来分享成果,享受成功的喜悦,而且还可以锻炼学生的组织表达能力,增强学生的自信心.通过评估,可以使同学清楚地看到自己的优点与不足.通过交流研讨,分享成果,进行思维碰撞,使认识和情感得到提升.
教学设计方案
教学目标
(1)了解线性规划的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(2)了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;
(3)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;
(4)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.
重点难点
理解二元一次不等式表示平面区域是教学重点。
如何扰实际问题转化为线性规划问题,并给出解答是教学难点。
教学步骤
(一)引入新课
我们已研究过以二元一次不等式组为约束条件的二元线性目标函数的线性规划问题。那么是否有多个两个变量的线性规划问题呢?又什么样的问题不用线性规划知识来解决呢?
(二)线性规划问题的教学模型
线性规划研究的是线性目标函数在线性约束条件下取最大值或最小值问题,一般地,线性规划问题的数字模型是
已知其中都是常数,是非负变量,求的最大值或最小值,这里是常量。
前面我们计论了两个变量的线性规划问题,这类问题可以用图解法来求最优解,涉及更多变量的线性规划问题不能用图解法求解。比如线性不等式不能用图形来表示它,那么对四元线性规划问题就不能用图形来求解了,对这样的线性规划问题怎样求解,同学们今后在大学学习中会得到解决。
线性规划在实际中的应用
线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务,常见问题有:
1.物调运问题
例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调运方案,能使总运费最小?
2.产品安排问题
例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,能使每月获得的总利润最大?
3.下料问题
例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?
4.研究一个例子
下面的问题,能否用线性规划求解?如能,请同学们解出来。
某家具厂有方木料,五合板,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料、五合板,生产每个书橱需要方木料、五合板,出售一张书桌可获利润80元,出售一个书橱可获利润120元,如果只安排生产书桌,可获利润多少?如何只安排生产书橱,可获利润多少?怎样安排生产时可使所得利润最大?
A.教师指导同学们逐步解答:
(1)先将已知数据列成下表
(2)设生产书桌x张,生产书橱y张,获利润为z元。
分析:显然这是一个二元线性问题,可归结于线性规划问题,并可用图解法求解。
(3)目标函数
①在第一个问题中,即只生产书桌,则,约束条件为
∴最多生产300张书桌,获利润元
这样安排生产,五合板先用光,方木料只用了,还有没派上用场。
②在第二个问题中,即只生产书橱,则,约束条件是
∴最多生产600张书橱,获利润元
这样安排生产,五合板也全用光,方木料用去了,仍有没派上用场,获利润比只生产书桌多了48000元。
③在第三个问题中,即怎样安排生产,可获利润最大?
,约束条件为
对此,我们用图解法求解,
先作出可行域,如图阴影部分。
时得直线与平行的直线过可行域内的点M(0,600)。因为与平等的过可行域内的点的所有直线中,距原点最远,所以最优解为,即此时
因此,只生产书橱600张可获得最大利润,最大利润是72000元。
B.讨论
为什么会出现只生产书橱,可获最大利润的情形呢?第一,书橱比书桌价格高,因此应该尽可能多生产书橱;第二,生产一张书橱只需要五合板,生产一张书桌却需要五合板,按家具厂五合板的存有量,可生产书橱600张,若同时又生产书桌,则生产一张书桌就要减少两张书橱,显然这不合算;第三,生产书橱的另种材料,即方木料是足够供应的,家具厂方木料存有量为,而生产600张书橱只需要方木料。
这是一个特殊的线性规划问题,再来研究它的解法。
C.改变这个例子的个别条件,再来研究它的解法。
将这个例子中方木料存有量改为,其他条件不变,则
作出可行域,如图阴影部分,且过可行域内点M(100,400)而平行于的直线离原点的距离最大,所以最优解为(100,400),这时(元)。
故生产书桌100、书橱400张,可获最大利润56000元。
总结、扩展
1.线性规划问题的数字模型。
2.线性规划在两类问题中的应用
布置作业
到附近的工厂、乡镇企业、商店、学校等作调查研究,了解线性规划在实际中的应用,或提出能用线性规划的知识提高生产效率的实际问题,并作出解答。把实习和研究活动的成果写成实习报告、研究报告或小论文,并互相交流。
探究活动
如何确定水电站的位置
小河同侧有两个村庄A,B,两村庄计划于河上共建一水电站发电供两村使用.已知A,B两村到河边的垂直距离分别为300m和700m,且两村相距500m,问水电站建于何处,送电到两村电线用料最省?
[解]视两村庄为两点A,B,小河为一条直线L,原问题便转化成在直线上找一点P,使P点到A,B两点距离之和为最小的问题.
以L所在直线为轴,轴通过A点建立直角坐标系,如图所示.作A关于轴的对称点,连,与轴交于点P.由平面几何知识得,点P即为所求.据已知条件,A(0,300),(0,-300).过B作轴于点,过A作,于点H.
由,,得B(300,700).于是直线的方程为
即
所以P点的坐标即为与轴的交点(90,0),即水电站应建在河边两村间且离A村距河边的最近点90m的地方
研究性课题与实习作业:线性规划的实际应用