你的位置:
  • 范文大全
  • >教案
  • >导航
  • >初中数学教案优秀教案大全及反思
  • 初中数学教案优秀教案大全及反思

    发表时间:2024-10-25

    初中数学教案优秀教案大全及反思。

    作为一名教学工作者,总不可避免地需要编写教案,教案有助于顺利而有效地开展教学活动。那么写教案需要注意哪些问题呢?以下是小编精心整理的初中数学教案(精选11篇),欢迎大家借鉴与参考,希望对大家有所帮助。

    初中数学教案优秀教案大全及反思 篇1

    一、教学目标:

    1.理解二元一次方程及二元一次方程的解的概念;

    2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

    3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

    4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育.

    二、教学重点、难点:

    重点:二元一次方程的意义及二元一次方程的解的概念.

    难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.

    三、教学方法与教学手段:

    通过与一元一次方程的比较,加强学生的类比的思想方法; 通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点.

    四、教学过程:

    1.情景导入:

    新闻链接:桐乡70岁以上老人可领取生活补助,

    得到方程:80a+150b=902 880.

    2.新课教学:

    引导学生观察方程80a+150b=902 880与一元一次方程有异同?

    得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.

    做一做:

    (1)根据题意列出方程:

    ①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ;

    ②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: .

    (2)课本P80练习2. 判定哪些式子是二元一次方程方程.

    合作学习:

    活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动.

    问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.

    团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等. 得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.

    并提出注意二元一次方程解的.书写方法.

    3.合作学习:

    给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值; 接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

    出示例题:已知二元一次方程 x+2y=8.

    (1)用关于y的代数式表示x;

    (2)用关于x的代数式表示y;

    (3)求当x= 2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解.

    (当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)

    4.课堂练习:

    (1)已知:5xm-2yn=4是二元一次方程,则m+n=;

    (2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ;

    5.你能解决吗?

    小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案.

    6.课堂小结:

    (1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

    (2)二元一次方程解的不定性和相关性;

    (3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.

    7.布置作业:(1)教材P82; (2)作业本.

    教学设计意图:

    依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开.

    在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学. 并对教学

    内容进行适当的重组、补充和加工等,创造性地使用了教材. 所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力. 这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来.

    其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的. 重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养.

    二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象. 在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便.

    初中数学教案优秀教案大全及反思 篇2

    一、案例实施背景

    教材为人教版义务教育课程标准实验教科书七年级数学(下册)。

    二、案例主题分析与设计

    本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第五章第3节内容——5.3.1平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。

    《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活?数学”“活动?思考”“表达?应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

    三、案例教学目标

    1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。

    2 .数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的`全过程。

    3.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

    4.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

    四、案例教学重、难点

    1.重点:对平行线性质的掌握与应用。

    2.难点:对平行线性质1的探究。

    五、案例教学用具

    1.教具:多媒体平台及多媒体课件.

    2.学具:三角尺、量角器、剪刀。

    六、案例教学过程

    1.创设情境,设疑激思

    ⑴播放一组幻灯片。

    内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。

    ⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

    ⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行。

    ⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)。

    2.数形结合,探究性质

    ⑴画图探究,归纳猜想。

    教师提要求,学生实践操作:任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

    教师提出研究性问题一:

    指出图中的同位角,并度量这些角,填写结果:

    第一组:同位角( )( ) 角的度数( )( ) 数量关系( )

    第二组:同位角( )( ) 角的度数( )( ) 数量关系( )

    第三组:同位角( )( ) 角的度数( )( ) 数量关系( )

    第四组:同位角( )( ) 角的度数( )( ) 数量关系( )

    教师提出研究性问题二:

    将图中的同位角任先一组剪下后叠合。学生活动一:画图—剪图—叠合—猜想学生活动二:画图—剪图—叠合—猜想让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

    教师提出研究性问题三:

    再画出一条截线d,看你的猜想结论是否仍然成立?

    学生活动:探究、按小组讨论,最后得出结论:仍然成立。

    ⑵教师用《几何画板》课件验证猜想,让学生直观感受猜想

    ⑶教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

    3.引申思考,培养创新

    教师提出研究性问题四:

    请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。

    教师活动:评价学生的研究成果,并引导学生说理

    因为a∥b(已知)所以∠1=∠2(两直线平行,同位角相等)

    又∠1=∠3(对顶角相等)∠1+∠4=180°(邻补角的定义)

    所以∠2=∠3(等量代换)∠2+∠4=180°(等量代换)

    教师展示:平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

    平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)

    4.实际应用,优势互补

    ⑴(抢答)课本P21 练一练

    1、2及习题5.3

    1、3.

    ⑵(讨论解答)课本P22 习题5.

    32、

    4、5.

    5.课堂总结:

    这节课你有哪些收获?

    ⑴学生总结:平行线的性质

    1、

    2、3.⑵教师补充总结:

    ①用“运动”的观点观察数学问题;(如前面将同位角剪下叠合后分析问题)。

    ②用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)。③用准确的语言来表达问题(如平行线的性质

    1、

    2、3的表述)。

    ④用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)

    6 .作业。学习与评价: P 2 3 6 ( 选择);P24

    7、12(拓展与延伸)。

    七、教学反思

    数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的教学实现了三个方面的转变:

    1.教的转变

    本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。

    2.学的转变

    学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。

    3.课堂氛围的转变

    整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

    总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!

    初中数学教案优秀教案大全及反思 篇3

    在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。

    一、注重类比教学

    不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为类比教学.在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由学会到会学,真正实现教是为了不教的目的.有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学。

    首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓麻雀虽小,五脏俱全。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。例如:

    《正比例函数》教学流程

    (一)环节一:概念的建立

    通过对问题的处理用函数y=200x来反映汽车的行程与时间的对应规律引入新课。学生自觉思考教师提问,共同得出每个问题的函数关系式。引导学生观察以上函数关系式的特点得出正比例函数的描述定义及解析式特点。

    (二)环节二:函数图象

    这个环节是教学的重点,由学生先动手按列表——描点——连线的过程画函数y=2x和y=-2x的图象,相互交流比较然后教师利用多媒体展示画函数图象的过程并通过比较使学生正确掌握画函数图象的方法。

    (三)环节三:探究函数性质

    让学生观察函数图象并引导学生通过比较来归纳正比例函数的性质,这个环节是本课的难点,教师要引导学生从图象的形状,从左往右的升降情况,经过的象限及自变量变化时函数值的变化规律。这几个方面来归纳,最终得出正比例函数的性质。

    (四)环节四:概念的归纳

    将观察、探究出的函数图象的特征、函数的性质等做出系统的归纳。

    二、注重数形结合的教学

    数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

    函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的数形结合。函数图象就是将变化抽象的函数拍照下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中,我们需要注意以下几点原则:

    (1)让学生经历绘制函数图象的具体过程。首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。

    (2)切莫急于呈现画函数图象的简单画法。首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的简单画法,追求方法的最优化,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。

    (3)注意让学生体会研究具体函数图象规律的方法。初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。

    函数是一个整体,各个具体函数是函数的特例,研究方法应是相同的,通过类比和数形结合的方法,对比性质的差异性,将具体函数逐步纳入到整个函数学习中去,这也符合教材设计的螺旋式上升的理念。这样自然使二次函数变得难着不难,水到渠成。

    关于待定系数法,首先要让学生理解感受到待定系数法的本质:对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。待定系数法在确定各种函数解析式中有着重要的作用,不论是正、反比例函数,还是一次函数、二次函数,确定函数解析式时都离不开待定系数法。因此我们要重视简单的正比例函数、一次函数的待定系数法的应用。要在简单的函数中讲出待定系数法的本质来,等到了反比例函数和二次函数及综合情况,学生已能形成能力,自如使用此方法,这时就是技巧的点拨。

    初中数学教案优秀教案大全及反思 篇4

    一、教学目标:

    1、知道一次函数与正比例函数的定义。

    2、理解掌握一次函数的图象的特征和相关的性质。

    3、弄清一次函数与正比例函数的区别与联系。

    4、掌握直线的平移法则简单应用。

    5、能应用本章的基础知识熟练地解决数学问题。

    二、教学重、难点:

    重点:初步构建比较系统的函数知识体系。

    难点:对直线的平移法则的理解,体会数形结合思想。

    三、教学过程:

    1、一次函数与正比例函数的定义:

    一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

    正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

    2、一次函数与正比例函数的区别与联系:

    (1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

    (2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

    平行的一条直线。

    基础训练:

    1、写出一个图象经过点(1,—3)的函数解析式为:

    2、直线y=—2X—2不经过第象限,y随x的增大而。

    3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:

    4、已知正比例函数y=(3k—1)x,,若y随x的增大而增大,则k是:

    5、过点(0,2)且与直线y=3x平行的直线是:

    6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:

    7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。

    8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为。

    9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

    (1)求线段AB的长。

    (2)求直线AC的解析式。

    初中数学教案优秀教案大全及反思 篇5

    一.教学目标

    1.知识与技能

    (1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

    (2)在有理数加法法则的教学过程中,注意培养学生的运算能力.

    2.数学思考

    通过观察,比较,归纳等得出有理数加法法则。

    3.解决问题

    能运用有理数加法法则解决实际问题。

    4.情感与态度

    认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

    5.重点

    会用有理数加法法则进行运算.

    6.难点

    异号两数相加的法则.

    二.教材分析

    “有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

    三.学校与学生情况分析

    冲坡中学是乐东县利国镇的一所完全中学,学生都来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。

    四.教学过程

    (一)问题与情境

    我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为

    4+(-2),黄队的净胜球为1+(-1)。

    这里用到正数与负数的加法。

    (二)、师生共同探究有理数加法法则

    前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.

    两个有理数相加,有多少种不同的情形?

    为此,我们来看一个大家熟悉的实际问题:

    足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

    (1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是

    (+3)+(+1)=+4.

    (2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是

    (-2)+(-1)=-3.

    现在,请同学们说出其他可能的情形.

    答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

    (+3)+(-2)=+1;

    上半场输了3球,下半场赢了2球,全场输了1球,也就是

    (-3)+(+2)=-1;

    上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

    (+3)+0=+3;

    上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

    (-2)+0=-2;

    上半场打平,下半场也打平,全场仍是平局,也就是

    0+0=0.

    上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

    这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

    1.同号两数相加,取相同的符号,并把绝对值相加;

    2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

    3.一个数同0相加,仍得这个数.

    (三)、应用举例 变式练习

    例1 口答下列算式的结果

    (1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);

    (5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0.

    学生逐题口答后,师生共同得出

    进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

    例2(教科书的例1)

    解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

    =-(3+9) (和取负号,把绝对值相加)

    =-12.

    (2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)

    =-(4.7-3.9) (和取负号,把大的.绝对值减去小的绝对值)

    =-0.8

    例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

    下面请同学们计算下列各题以及教科书第23页练习第1与第2题

    (1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

    学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

    (四)、小结

    1.本节课你学到了什么?

    2.本节课你有什么感受?(由学生自己小结)

    (五)练习设计

    1.计算:

    (1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);

    (5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37.

    2.计算:

    (1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;

    (4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);

    (7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.

    4.用“>”或“<”号填空:

    (1)如果a>0,b>0,那么a+b ______0;

    (2)如果a<0,b<0,那么a+b ______0;

    (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

    (4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

    五.教学反思

    “有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的`练习,如本教学设计.

    现在,试比较这两类教学设计的得失利弊.

    第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.

    第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.

    这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。

    六.点评

    潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性。

    初中数学教案优秀教案大全及反思 篇6

    一、教材分析

    本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

    二、教学目标

    1、知识目标:了解多边形内角和公式。

    2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

    3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

    4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

    三、教学重、难点

    重点:探索多边形内角和。

    难点:探索多边形内角和时,如何把多边形转化成三角形。

    四、教学方法:

    引导发现法、讨论法

    五、教具、学具

    教具:多媒体课件

    学具:三角板、量角器

    六、教学媒体:

    大屏幕、实物投影

    七、教学过程:

    (一)创设情境,设疑激思

    师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

    活动一:探究四边形内角和。

    在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

    方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

    方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

    接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

    师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

    活动二:探究五边形、六边形、十边形的内角和。

    学生先独立思考每个问题再分组讨论。

    关注:

    (1)学生能否类比四边形的方式解决问题得出正确的结论。

    (2)学生能否采用不同的方法。

    学生分组讨论后进行交流(五边形的内角和)

    方法1:把五边形分成三个三角形,3个180的和是540。

    方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

    方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

    方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

    师:你真聪明!做到了学以致用。

    交流后,学生运用几何画板演示并验证得到的方法。

    得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

    (二)引申思考,培养创新

    师:通过前面的讨论,你能知道多边形内角和吗?

    活动三:探究任意多边形的内角和公式。

    思考:

    (1)多边形内角和与三角形内角和的关系?

    (2)多边形的边数与内角和的关系?

    (3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

    学生结合思考题进行讨论,并把讨论后的结果进行交流。

    发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。

    发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

    得出结论:多边形内角和公式:(n-2)·180。

    (三)实际应用,优势互补

    1、口答:

    (1)七边形内角和()

    (2)九边形内角和()

    (3)十边形内角和()

    2、抢答:

    (1)一个多边形的内角和等于1260,它是几边形?

    (2)一个多边形的`内角和是1440,且每个内角都相等,则每个内角的度数是()。

    3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

    (四)概括存储

    学生自己归纳总结:

    1、多边形内角和公式

    2、运用转化思想解决数学问题

    3、用数形结合的思想解决问题

    (五)作业:练习册第93页1、2、3

    八、教学反思:

    1、教的转变

    本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

    2、学的转变

    学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

    3、课堂氛围的转变

    整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

    初中数学教案优秀教案大全及反思 篇7

    教学目标:

    1、掌握一元二次方程的根与系数的关系并会初步应用。

    2、培养学生分析、观察、归纳的能力和推理论证的能力。

    3、渗透由特殊到一般,再由一般到特殊的认识事物的规律。

    4、培养学生去发现规律的积极性及勇于探索的精神。

    教学重点与难点:

    重点

    根与系数的关系及其推导

    难点

    正确理解根与系数的关系。一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系。

    教学过程:

    一、复习引入

    1、已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。

    2、由上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?

    3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?

    二、探索新知

    解下列方程,并填写表格:

    方程x1 x2 x1+x2 x1x2

    x2-2x=0

    x2+3x-4=0

    x2-5x+6=0

    观察上面的表格,你能得到什么结论?

    (1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?

    (2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?

    解下列方程,并填写表格:

    方程x1 x2 x1+x2 x1x2

    2x2-7x-4=0

    3x2+2x-5=0

    5x2-17x+6=0

    小结:根与系数关系:

    (1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)

    (2)形如ax2+bx+c=0(a≠0)的'方程,可以先将二次项系数化为1,再利用上面的结论。

    即:对于方程ax2+bx+c=0(a≠0)

    ∵a≠0,∴x2+bax+ca=0

    ∴x1+x2=-ba,x1x2=ca

    (可以利用求根公式给出证明)

    例1不解方程,写出下列方程的两根和与两根积:

    (1)x2-3x-1=0 (2)2x2+3x-5=0

    (3)13x2-2x=0 (4)2x2+6x=3

    (5)x2-1=0 (6)x2-2x+1=0

    例2不解方程,检验下列方程的解是否正确?

    (1)x2-22x+1=0 (x1=2+1,x2=2-1)

    (2)2x2-3x-8=0 (x1=7+734,x2=5-734)

    例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程。(你有几种方法?)

    例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值。

    变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;

    变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.

    三、课堂小结

    1、根与系数的关系。

    2、根与系数关系使用的前提是:

    (1)是一元二次方程;

    (2)判别式大于等于零。

    四、作业布置

    1、不解方程,写出下列方程的两根和与两根积。

    (1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0

    (4)3x2+x+1=0

    2、已知方程x2-3x+m=0的一个根为1,求另一根及m的值。

    3、已知方程x2+bx+6=0的一个根为-2,求另一根及b的值

    初中数学教案优秀教案大全及反思 篇8

    教学目标:

    (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

    (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

    重点难点:

    能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

    教学过程:

    一、试一试

    1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

    2.x的值是否可以任意取?有限定范围吗?

    3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,

    对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函数关系式.

    二、提出问题

    某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:

    1.商品的利润与售价、进价以及销售量之间有什么关系?

    [利润=(售价-进价)×销售量]

    2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

    [10-8=2(元),(10-8)×100=200(元)]

    3.若每件商品降价x元,则每件商品的利润是多少元?一天可销

    售约多少件商品?

    [(10-8-x);(100+100x)]

    4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

    [x的值不能任意取,其范围是0≤x≤2]

    5.若设该商品每天的利润为y元,求y与x的函数关系式。

    [y=(10-8-x)(100+100x)(0≤x≤2)]

    将函数关系式y=x(20-2x)(0<x<10=化为:

    y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D(0≤x≤2)……………………(2)

    三、观察;概括

    1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

    (1)函数关系式(1)和(2)的自变量各有几个?

    (各有1个)

    (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)

    (3)函数关系式(1)和(2)有什么共同特点?

    (都是用自变量的二次多项式来表示的)

    (4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

    2.二次函数定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

    四、课堂练习

    1.(口答)下列函数中,哪些是二次函数?

    (1)y=5x+1(2)y=4x2-1

    (3)y=2x3-3x2(4)y=5x4-3x+1

    2.P3练习第1,2题。

    五、小结

    1.请叙述二次函数的定义.

    2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

    六、作业:略

    初中数学教案优秀教案大全及反思 篇9

    新学期已到来,我们又要投入到紧张、繁忙而有序地教育教学工作中,使自己今后的教学工作中能有效地、有序地贯彻新的教育精神,围绕我校新学期的工作计划要求制定初中一年级数学教学设计方案:

    一、教材分析:

    本学期是本年级学生初中学习阶段的第二学期、新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、现行教材、教学大纲要求学生从身边的实际问题出发,乘坐观察、思考、探究、讨论、归纳之舟,去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教师在灵活选用现有教材的基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质、

    二、教学目标:

    本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力、在期末考试中力争生均分87分左右,及格率75%以上,并将低分率控制到10%以下,综合成绩县前五、

    三、教学措施:

    1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质、

    2、把握学生思想动态,及时与学生沟通,搞好师生关系、

    3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩、

    4、改进教学方法,用挂图,实物创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会、

    5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘、

    6、开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力、

    7、加强培优补中促差生的个别辅导,因材施教,培养学生的个性特长、特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:(1)课前预习习惯;(2)积极思考,主动发言习惯;(3)自主作业习惯;(4)课后复习习惯。

    初中数学教案优秀教案大全及反思 篇10

    一、学情分析

    学生通过上节课的学习,已经掌握了如何用没有刻度的直尺和圆规作一条线段等于已知线段。同时在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

    二、教学目标分析

    教科书基于学生在上节课学习了如何作一条线段等于已知线段,并积累了一定的活动经验,提出本节课的主要教学任务是:会用尺规作一个角等于已知角,并了解它在尺规作图中的'简单应用。为此,本节课的教学目标是:

    1、能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。

    2、能利用尺规作角的和、差、倍。

    3、能够通过尺规设计并绘制简单的图案。

    4、在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。

    三、教学设计分析

    1、回顾与思考

    活动内容:

    (1)怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?

    (2)练习:已知线段a,b,c,作一条线段m,使得m=a+b—c

    活动目的:

    通过回顾上节课学习的用尺规作线段,既达到了复习巩固,反馈落实的目的,同时熟练尺规的使用,积累活动经验,也为后面学习用尺规作角起到了铺垫的作用。

    2、情境引入,探索发现

    活动内容:如图2

    初中数学教案优秀教案大全及反思 篇11

    教材分析:

    一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

    学情分析:

    1.学生已学习用求根公式法解一元二次方程。

    2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

    3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

    教学目标:

    1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

    2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

    3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

    教学重难点:

    1、重点:一元二次方程根与系数的关系。

    2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

    板书设计:

    一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。

    问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。

    学生学习活动评价设计:

    本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。

    教学反思:

    1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

    2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。

    3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

    4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。

    【初中数学教案优秀教案大全及反思】相关推荐
    五年级下学期班主任工作计划 优秀范文模板

    充分准备一份教案是一名优秀教师的职责所在,我们可以通过教案来进行更好的教学,每一位教师都要慎重考虑教案的设计,你是否在烦恼教案怎么写呢?可以看看本站收集的《五年级下学期班主任工作计划 优秀范文模板》,希望能够为您提供参考。五年级下学期班主任工作计划新的一学期又开始了,为了在新的学期里把工作做好,把我...

    2025春四年级班主任工作计划

    按照学校要求,教师都需要用到教案,教案在我们教师的教学中非常重要,做好教案对我们未来发展有着很重要的意义,如何才能写好教案呢?下面是小编特地为大家整理的“春四年级班主任工作计划”。20xx春四年级下学期班主任工作计划本学期我继续担任四年级的班主任,为了更好地开展工作,现拟订本学期班主任工作计划。一、...