【www.jk251.com - 生物科学与环境保护】
在我们的高中教学中都离不开教案的撰写,撰写教案有利于教研活动的进行,用心编写教案才能促进教学进一步发展,你是否在烦恼高中教案怎么写呢?下面是由小编为大家整理的生物科学与社会【精】,仅供参考,欢迎大家阅读。
本模块的内容包括生物科学与农业、生物科学与工业、生物科学与健康、生物科学与环境保护四部分。
迅速发展的现代生物技术已被广泛地运用于人类生产生活的各个领域,如育种、有害生物的防治、生物工程制药、生物净化技术等。生物科学技术不仅影响人类生活和经济活动,还深刻影响着人们的意识,如从环境保护的角度思考生产方式和生活方式,关注生物技术的伦理问题,等等。本模块能使学生较全面地了解生物科学技术应用的现状和发展前景,引导学生关注社会、关注生活、关注身边的科学和技术;能帮助学生体会到生物科学与人类社会、与他们的日常生活密切相关,并能对科学、技术、社会的相互关系形成正确的认识。
教师应注意结合与学生生活密切相关的问题进行教学,引导学生开展相关的调查、讨论和探究活动,培养学生的参与意识,帮助学生形成正确的价值观念,提高社会责任感。
5.1生物科学与农业
具体内容标准
活动建议
概述农业生产中的繁殖控制技术。列举现代生物技术在育种中的应用。
简述植物病虫害的防治原理和技术。
关注动物疫病的控制。
描述绿色食品的生产。
举例说明设施农业。调查当地主要农作物一种病虫害的防治措施和效果。
讨论某种动物疫病的发生规律及防治方法。
调查当地绿色食品生产或消费的情况。
参观设施农业。
5.2生物科学与工业
具体内容标准
活动建议
举例说出发酵与食品生产。举例说明酶在工业生产中的应用。
举例说明生物工程技术药物和疫苗的生产原理。调查了解哪些药物和疫苗是利用生物工程技术研发的。
5.3生物科学与健康
具体内容标准
活动建议简述基因诊断和基因治疗。举例说明器官移植。
简述避孕的原理和方法。
举例说明人工受精、试管婴儿等生殖技术。
简述抗生素的合理使用。参观性教育展览。
开展有关性道德的讨论。
讨论生殖技术的伦理问题。
5.4生物科学与环境保护
具体内容标准
活动建议
识别生物性污染。概述生物净化的原理和方法。
认同有利于环境保护的消费行为。
关注生物资源的合理利用。
搜集利用生物净化原理治理环境污染的资料。
讨论日常生活中有哪些不利于环境保护的消费行为。
模拟对某个环境事件或资源利用计划作出决策。
jK251.COm精选阅读
运动的合成与分解【精】
教学目标
知识目标
1、通过对多个具体运动的演示及分析,使学生明确什么是合运动,什么是分运动;合、分运动是同时发生的,并且不互相影响.
2、利用矢量合成的原理,解决运动合成和分解的具体情况,会用作图法、直角三角形的知识解决有关位移、速度合成和分解的问题.
能力目标
培养学生应用数学知识解决物理问题的能力.
情感目标
通过对运动合成与分解的练习和理解,发挥学生空间想象能力,提高对相关知识的综合应用能力.
教学建议
教材分析
本节内容可分为四部分:演示实验、例题、对运动合成和分解轨迹的分析、思考与讨论,但都是围绕演示实验而展开的,层层深入,由提出问题到找出解决问题的方法,以至最后对运动合成和分解问题的进一步讨论.
教法建议
关于演示实验所用的器材、材料都比较容易得到,实验也容易成功.此实验是本节的重点.一些重要的结论规律都是由演示实验分析得出的.观察红蜡块的实际运动引出合运动,并分析红蜡块的运动可看成沿玻璃管竖直方向的运动,和随管一起沿水平方向的运动,从而得出分运动的概念.着重分析蜡块的合运动和分运动是同时进行的,并且两个分运动之间是不相干的.合运动和分运动的位移关系,在演示中比较直观.而明确了它们的同时性,就容易得出合运动和分运动的速度关系.因此,课本在这里同时讲述了合运动和分运动的位移及速度的关系.即找到了解决运动合成和分解的方法——平行四边形定则.它是解决运动合成和分解的工具,所以在处理一个复杂的运动时,首先明确哪个是合运动,哪个是分运动,才能用平行四边形法则求某一时刻的合速度、分速度、加速度,某一过程的合位移、分位移.课本中合运动的定义是:红蜡块实际发生的运动,(由)通常叫合运动,即实际发生的运动,也理解为研究对象以地面为参照物的运动,再给学生举几个实例来说明如何确定合运动.如:
1、风中雨点下落表示风速,表示没风时雨滴下落速度,v表示雨滴合速度.
2、关于小船渡河(如图):表示船在静水中的运动速度,方向由船头指向确定.表示水的流速,v表示雨滴合速度.
在研究雨滴和船的运动时,解决问题的关键是先确定雨滴、小船实际运动(合运动).
注意应用平行四边形定则时,合矢量在对角线上,问题马上得到解决.
关于例题:例1:将演示实验过程定量讨论.给出两个分运动、及合、分运动的时间,求合速度.
法一;先求出两个分速度再利用矢量合成求v.
法二:先利用矢量合成求出s,再由求出v.
例2:飞机飞行给出及与某一分速度角度,来求另外两个分速度.其思路先由平行四边形法则画出几何关系,再利用数学计算解决分速度问题.
两道例题很简单,但合、分运动关系及解决问题的方法、思路充分体现出来.通过练习使学生们加深了对合、分运动的理解.
关于分运动的性质决定合运动的性质和轨迹:课本以蜡块的运动说明两个直线运动的合运动不一定都是直线运动.为了搞清楚蜡块哪种情况下做直线运动,哪种情况下做曲线运动.这里可以让学生自己探究,得出结论:两个直线的合运动也可以是曲线运动.研究复杂的运动,可以根据不同方向分运动来研究复杂运动情况.
关于思考与讨论:本节只研究了互成角度的运动,其合成和分解遵从矢量合成规律——平行四边形定则.那么初速度为的匀变速直线运动,可以看作同一直线上哪两个分运动的合运动?引导学生对同一直线上的运动合成和分解问题进行讨论,得出该运动也满足矢量合成规律(注意正方向),使我们对矢量合成与分解的规律有了更深的理解.
教学设计方案
运动的合成和分解
教学重点:
对于一个具体运动确定哪个是合运动以及合、分运动的关系(矢量图),并能用矢量合成规律解决实际问题.
教学难点:对合运动的理解.
主要教学设计:
由演示实验引出课题.首先介绍实验装置及研究对象,然后演示两个过程:红蜡块匀速上升;红错块匀速上升的同时将玻璃管向右水平匀速移动.观察蜡块轨迹——倾斜直线,从而引出课题.我们研究较复杂的运动,可以用到运动的合成和分解知识.实际运动参与两个运动,本例中竖直方向和水平方向,而实际运动沿倾斜直线运动.
一、如何确定一个具体运动的合运动及分运动?
1、合运动----研究对象实际发生的运动
2、合运动在中央,分运动在两边
讨论:有风天气雨滴下落、小船过河,加深同学们对合运动,就是研究对象实际发生运动的理解.(结合课件1、2).
引导分析:雨点斜落向落到地面,此实际运动方向为合速度方向;注意区别船头方向为分速度方向,而船实际航行方向为合速度方向.
进一步研究合、分运动关系,(由演示实验说明)重新演示红蜡块运动的两个分运动:管不动,蜡块匀速上升管长度所用时间,管水平匀速移动蜡块匀速上升,观察并记录直到蜡块到达管顶所用时间t.由和t的关系再结合课件l、2得出:
二、合、分运动关系
1、合、分运动的等时性
2、合、分运动关系符合平行四边形定则
三、利用矢量合成与分解规律解决实际问题
例1学生自己分析:已知两分运动位移、及合运动时间(先画v、s矢量图)
方法一:
方法二:
例2思路:先画矢量图,并标已知、未知,然后由几何关系求两分速度
四、两个直线运动的合运动轨迹的确定
演示实验中蜡块同时参与竖直向上和水平向右两个运动,其合运动轨迹是直线.任何两个直线运动的合运动轨迹一定是直线吗?
讨论方法:图像方法
写出关于两个方向运动性质位移方程,取不同时刻描点.
分两层次:基础差的学生利用课件3演示
基础好的学生探究活动(活动方案见下面)
探究活动
研究方法:
要求学生自己阅读本章节最后两段及习题中最后一道题,然后找出研究方法.(图像方法)
互相交流:
满足什么条件可以得出这个结论——怎样得出这个结论.
总结:
对学生的研究过程给予评价,最后提出若两个分运动都是匀加速运动,其运动轨迹如何?两个分运动都是初速度为零的匀加速运动,其运动轨迹又是如何?
复数的加法与减法【精】
教学目标
(1)掌握复数加法与减法运算法则,能熟练地进行加、减法运算;
(2)理解并掌握复数加法与减法的几何意义,会用平行四边形法则和三角形法则解决一些简单的问题;
(3)能初步运用复平面两点间的距离公式解决有关问题;
(4)通过学习平行四边形法则和三角形法,培养学生的数形结合的数学思想;
(5)通过本节内容的学习,培养学生良好思维品质(思维的严谨性,深刻性,灵活性等).
教学建议
一、知识结构
二、重点、难点分析
本节的重点是复数加法法则。难点是复数加减法的几何意义。复数加法法则是教材首先规定的法则,它是复数加减法运算的基础,对于这个规定的合理性,在教学过程中要加以重视。复数加减法的几何意义的难点在于复数加减法转化为向量加减法,以它为根据来解决某些平面图形的问题,学生对这一点不容易接受。
三、教学建议
(1)在中,重点是加法.教材首先规定了复数的加法法则.对于这个规定,应通过下面几个方面,使学生逐步理解这个规定的合理性:①当时,与实数加法法则一致;②验证实数加法运算律在复数集中仍然成立;③符合向量加法的平行四边形法则.
(2)复数加法的向量运算讲解设,画出向量,后,提问向量加法的平行四边形法则,并让学生自己画出和向量(即合向量),画出向量后,问与它对应的复数是什么,即求点Z的坐标OR与RZ(证法如教材所示).
(3)向学生介绍复数加法的三角形法则.讲过复数加法可按向量加法的平行四边形法则来进行后,可以指出向量加法还可按三角形法则来进行:如教材中图8-5(2)所示,求与的和,可以看作是求与的和.这时先画出第一个向量,再以的终点为起点画出第二个向量,那么,由第一个向量起点O指向第二个向量终点Z的向量,就是这两个向量的和向量.
(4)向学生指出复数加法的三角形法则的好处.向学生介绍一下向量加法的三角形法则是有好处的:例如讲到当与在同一直线上时,求它们的和,用三角形法则来解释,可能比“画一个压扁的平行四边形”来解释容易理解一些;讲复数减法的几何意义时,用三角形法则也较平行四边形法则更为方便.
(5)讲解了教材例2后,应强调(注意:这里是起点,是终点)就是同复数-对应的向量.点,之间的距离就是向量的模,也就是复数-的模,即.
例如,起点对应复数-1、终点对应复数的那个向量(如图),可用来表示.因而点与()点间的距离就是复数的模,它等于。
教学设计示例
复数的减法及其几何意义
教学目标
1.理解并掌握复数减法法则和它的几何意义.
2.渗透转化,数形结合等数学思想和方法,提高分析、解决问题能力.
3.培养学生良好思维品质(思维的严谨性,深刻性,灵活性等).
教学重点和难点
重点:复数减法法则.
难点:对复数减法几何意义理解和应用.
教学过程设计
(一)引入新课
上节课我们学习了复数加法法则及其几何意义,今天我们研究的课题是复数减法及其几何意义.(板书课题:复数减法及其几何意义)
(二)复数减法
复数减法是加法逆运算,那么复数减法法则为(+i)-(+i)=(-)+(-)i,
1.复数减法法则
(1)规定:复数减法是加法逆运算;
(2)法则:(+i)-(+i)=(-)+(-)i(,,,∈R).
把(+i)-(+i)看成(+i)+(-1)(+i)如何推导这个法则.
(+i)-(+i)=(+i)+(-1)(+i)=(+i)+(--i)=(-)+(-)i.
推导的想法和依据把减法运算转化为加法运算.
推导:设(+i)-(+i)=+i(,∈R).即复数+i为复数+i减去复数+i的差.由规定,得(+i)+(+i)=+i,依据加法法则,得(+)+(+)i=+i,依据复数相等定义,得
故(+i)-(+i)=(-)+(-)i.这样推导每一步都有合理依据.
我们得到了复数减法法则,两个复数的差仍是复数.是唯一确定的复数.
复数的加(减)法与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减),即(+i)±(+i)=(±)+(±)i.
(三)复数减法几何意义
我们有了做复数减法的依据——复数减法法则,那么复数减法的几何意义是什么?
设z=+i(,∈R),z1=+i(,∈R),对应向量分别为,如图
由于复数减法是加法的逆运算,设z=(-)+(-)i,所以z-z1=z2,z2+z1=z,由复数加法几何意义,以为一条对角线,1为一条边画平行四边形,那么这个平行四边形的另一边2所表示的向量OZ2就与复数z-z1的差(-)+(-)i对应,如图.
在这个平行四边形中与z-z1差对应的向量是只有向量2吗?
还有.因为OZ2Z1Z,所以向量,也与z-z1差对应.向量是以Z1为起点,Z为终点的向量.
能概括一下复数减法几何意义是:两个复数的差z-z1与连接这两个向量终点并指向被减数的向量对应.
(四)应用举例
在直角坐标系中标Z1(-2,5),连接OZ1,向量1与多数z1对应,标点Z2(3,2),Z2关于x轴对称点Z2(3,-2),向量2与复数对应,连接,向量与的差对应(如图).
例2根据复数的几何意义及向量表示,求复平面内两点间的距离公式.
解:设复平面内的任意两点Z1,Z2分别表示复数z1,z2,那么Z1Z2就是复数对应的向量,点之间的距离就是向量的模,即复数z2-z1的模.如果用d表示点Z1,Z2之间的距离,那么d=|z2-z1|.
例3在复平面内,满足下列复数形式方程的动点Z的轨迹是什么.
(1)|z-1-i|=|z+2+i|;
方程左式可以看成|z-(1+i)|,是复数Z与复数1+i差的模.
几何意义是是动点Z与定点(1,1)间的距离.方程右式也可以写成|z-(-2-i)|,是复数z与复数-2-i差的模,也就是动点Z与定点(-2,-1)间距离.这个方程表示的是到两点(+1,1),(-2,-1)距离相等的点的轨迹方程,这个动点轨迹是以点(+1,1),(-2,-1)为端点的线段的垂直平分线.
(2)|z+i|+|z-i|=4;
方程可以看成|z-(-i)|+|z-i|=4,表示的是到两个定点(0,-1)和(0,1)距离和等于4的动点轨迹.满足方程的动点轨迹是椭圆.
(3)|z+2|-|z-2|=1.
这个方程可以写成|z-(-2)|-|z-2|=1,所以表示到两个定点(-2,0),(2,0)距离差等于1的点的轨迹,这个轨迹是双曲线.是双曲线右支.
由z1-z2几何意义,将z1-z2取模得到复平面内两点间距离公式d=|z1-z2|,由此得到线段垂直平分线,椭圆、双曲线等复数方程.使有些曲线方程形式变得更为简捷.且反映曲线的本质特征.
例4设动点Z与复数z=+i对应,定点P与复数p=+i对应.求
(1)复平面内圆的方程;
解:设定点P为圆心,r为半径,如图
由圆的定义,得复平面内圆的方程|z-p|=r.
(2)复平面内满足不等式|z-p|<r(r∈R+)的点Z的集合是什么图形?
解:复平面内满足不等式|z-p|<r(r∈R+)的点的集合是以P为圆心,r为半径的圆面部分(不包括周界).利用复平面内两点间距离公式,可以用复数解决解析几何中某些曲线方程.不等式等问题.
(五)小结
我们通过推导得到复数减法法则,并进一步得到了复数减法几何意义,应用复数减法几何意义和复平面内两点间距离公式,可以用复数研究解析几何问题,不等式以及最值问题.
(六)布置作业P193习题二十七:2,3,8,9.
探究活动
复数等式的几何意义
复数等式在复平面上表示以为圆心,以1为半径的圆。请再举三个复数等式并说明它们在复平面上的几何意义。
分析与解
1.复数等式在复平面上表示线段的中垂线。
2.复数等式在复平面上表示一个椭圆。
3.复数等式在复平面上表示一条线段。
4.复数等式在复平面上表示双曲线的一支。
5.复数等式在复平面上表示原点为O、构成一个矩形。
说明复数与复平面上的点有一一对应的关系,如果我们对复数的代数形式工(几何意义)之
间的关系比较熟悉的话,必然会强化对复数知识的掌握。