【www.jk251.com - 三角形的面积教案】
大家对教案都很熟悉了吧,我们可以通过教案来进行更好的教学,小学老师经常会为写教案感到苦恼,优秀的小学教案是什么样子的?下面是小编特地为大家整理的“角形面积的计算练习优秀模板”。
第四课时:三角形面积的计算练习课
教学内容:练习三第4—10题及思考题
教学目标:
使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积
教学过程:
一、第4题口算下面各题,将结果直接填写在书上。
第5题可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。
二、第6题要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。
三、第9题测量红领巾高时,可以启发学生把红领巾对折后再测量。
四、第10题要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
五、思考题每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
JK251.com延伸阅读
角形面积的计算 小学教案范例
教学内容
p27~28
教学目标
1、使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。
2、通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。
3、引导学生运用转化的方法探索规律。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积计算公式的推导过程。
教学准备:
投影和自制三角形面积演示纸板等
教学过程:
一、创设情境,引入课题
右图是一张三角形彩纸,它的面积是多少?
提问:这块彩纸是什么形状?你会算出它的面积吗?
引入:怎样把三角形转化成我们已学过的图形,然后算出它的面积呢?我们这节课就来探讨这个问题。
二、探索新知
1.推导三角形面积计算公式。
(1)操作感知:让学生用学具并用自己喜欢的办法探索怎样把三角形转化成平行四边形。
(2)汇报、交流,总结两种转化方法。
重点讨论:①拼成的平行四边形与原来的三角形有什么关系?②怎样计算三角形的面积?
形成共识:①两个完全一样的三角形都可以拼成一个平行四边形,这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高。②因为三角形的面积=拼成的平行四边形面积÷2
强化理解推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?
板书:三角形面积=底×高÷2
(3)用字母公式表示。
如果用s表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:s=ah÷2。(板书)
2.即时练习:让学生完成课前引入中的求彩纸面积的问题,并组织交流。
4×3÷2=12÷2=6(c㎡)
通过交流引导学生进一步认识三角形面积和平行四边形面积计算方法的异同点。
三、巩固练习
指导学生完成p28“试一试”。
四、总结全课
让学生谈谈这节课的收获和体会:怎样求三角形的面积?三角形面积的计算公式是怎样推导的?
五、作业
1.课内作业:p28“练一练”第一题。
2.课外作业:优化作业相关练习。
多边形面积的计算优秀模板
教学内容:课本p12~13例1~3及相关的试一试和练一练教学目标:1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。教学重点:理解并掌握平行四边形的面积公式教学难点:理解平行四边形面积公式的推导过程教学过程:一、复习导入:1、说出学过的平面图形,哪些图形的面积你会求?二、探究新知:1、教学例1:(1)出示例1中的第1组图要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较。(2)出示例1中的第2组图要求:还可以怎样比较两个图形面积的大小?(转化的方法)(3)揭示课题:师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)2、教学例2:(1)出示一个平行四边形,你能想办法把这个平行四边形转化成学过的图形吗?(2)学生操作,教师巡视指导。(3)学生交流操作情况(4)教室用课件或教具进行演示并小结。师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。(5)小组讨论:转化后的图形和原图有什么联系?①转化后长方形的面积与原平行四边形面积相等吗?②长方形的长与平行四边形的底有什么关系?③长方形的宽与平行四边形的高有什么关系?(6)学生总结,形成下面的板书:3、教学例3:(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。转化后的长方形平行四边形长(cm)宽(cm)面积(cm)底(cm)高(cm)面积(cm)(2)学生操作,反馈交流。(3)用字母表示面公式:s=ah(板书)三、巩固练习:1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。2、指导完成练一练:强调底和高的对应关系。四、总结: