你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >收听天气预报教案模板
  • 收听天气预报教案模板

    发表时间:2022-03-12

    【www.jk251.com - 收听天气预报】

    充分准备一份教案是一名教师的职责所在,一篇好的教案需要我们精心构思,写出一份教学方案需要经过精心的准备,自己的初中教案如何写呢?为了解决大家烦恼,小编特地收集整理了收听天气预报教案模板,供大家参考。

    教学目标

    1.通过有计划地收听收看电视台播放的天气预报节目,了解天气预报的主要内容;通过“学做天气预报员”的训练,使学生熟悉常见的天气符号,会看简易的天气预报图。

    2.掌握判读卫星云图的基本方法,了解卫星云图对群众生活和工农业生产的重要意义,并初步了解卫星云图是如何制作形成的。

    3.通过实际生活中的例子,使学生认识到天气预报与人们生活和生产的密切关系,并且感受到科学技术对人类的重要作用,培养学生对科学技术的兴趣。

    教学建议

    知识结构

    本节从学生比较熟悉的天气预报谈起,并且按照平时电视节目中播放的顺序,依次介绍了卫星云图、天气符号和简易的天气预报图,着重强调对这些图的判断、解读。由于这些内容贴近生活,联系实际,具有一定的趣味性,所以可以激发学生的兴趣,吸引他们继续进行后几节的深入学习。

    另外需要指出的是,本章的题目是"中国的天气和气候",所以需要在进行本节学习之前首先帮助学生回忆在初一学过的关于"天气和气候的区别"的有关内容,这是进行后面学习的基础。

    重点和难点

    重点:

    1.识别天气预报中常用的天气符号所表示的各种天气现象。

    2.学会收听、收看天气预报。

    难点:城市天气预报图的判读。

    教法建议

    本节教学以识图、辨图为主要目标,因此可以以学生为主体,采取灵活多样的活动方式进行教学,例如安排学生自己画天气符号,并且以两个同学为一组:一位同学举天气符号,另一位同学模拟天气预报播报员,反复练习,然后交换。另外,为了训练学生读卫星云图的能力,教师可以另外找一幅图,以小组为单位,进行天气预报,分析天气趋势。此外在培养学生收听、收看天气预报的同时,让学生注意总结规律,并试探预报短期天气。在简单地看与听的同时,主动的去参与实践。

    本节内容建议授课1课时。

    教学设计方案

    教学过程

    (导入新课)同学们,今天这节课我们开始学习第四章中国的天气和气候。

    (板书)第四章中国的天气和气候

    (复习提问)请同学们回忆初一地理课所学的知识,来说说天气和气候有什么区别(复习已有的知识引入新课)

    (概括总结)天气是一个地方短时间内的大气的具体状况,包括阴晴、风雨、冷热、风力等大气状况的变化。例如,今天的上午温和晴朗、无风,中午刮起了北风,气温有所下降。这说明天气是时刻变化的。而气候则是一个地方多年的天气平均状况,一般变化不大,如北京的气候特征是:夏季高温多雨,冬季寒冷干燥。

    (启发引导)我们在日常的生活中,对天气和气候哪个更为关注?(天气)为什么?

    (学生回答)因为天气是时时刻刻变化着的,而天气状况又与人们的日常生活许多方面和生产建设一些部门关系十分密切,如人们出行穿衣、乘车、农作物耕作,城市建筑业等方面。

    (进一步提问)既然如此,人们如何了解天气的变化?(通过天气预报)

    (总结)所以,每当我们第二天要出门的时候,总会听一听天气预报。全国各地的广播电台和电视台,每天都要多次播放天气预报,以方便人们的生活和工作。随着科学技术的进步,天气预报的准确率越来越高了,于是人们就更加关注天气预报。这节课,我们就一起来了解天气预报都预报哪些内容,他们是怎样做出这些预报的,最后我们学会判读天气预报图。

    (板书)第一节

    一、天气预报的重要性

    (启发引导)同学们是不是每天都收听或收看天气预报,什么新闻媒体刊登天气预报?

    天气预报的内容有哪些?请同学们看录像后回答天气预报的主要内容有什么、什么叫天气预报?

    (录像)某日中央电视台天气预报节目。

    学生看过录像,讨论、回答问题。

    (启发提问)从录像中看到中央电视台在播放天气预报时,最先出现在屏幕上的是一张什么图?你们知道这幅图是如何获得的吗?你认为从上面能获得什么信息?

    (展示图片)展示卫星云图的挂图、照片,或录像机中的卫星云图镜头,也可以让学生看课本封底的卫星云图照片。

    同学讨论、回答。

    (板书)二、卫星云图

    (教师总结)卫星云图计算在卫星上拍摄的图片,是由气象卫星给地球大气拍摄的图像。从图4.1可以看到气象卫星把摄取的图像信号发射到地面,通过地面接收系统接收显示出图片,得到一张卫星云图。

    在卫星云图上,有蓝色、绿色和白色三种不同颜色表示的区域。蓝色表示海洋,绿色表示陆地,白色表示云雨区。而且白色愈浓,表示云层愈厚,云层下面往往下雨就愈大。因此,卫星云图可以真实地显示出云雨区的位置、分布,尤其是能直观看到台风、寒潮、暴雨等灾害性天气的位置、强度及其变化情况,从而准确地做出天气预报。

    (板书)蓝色→海洋,绿色→陆地,白色→云雨区

    〔学生读图判别回答〕请同学们阅读课本封底的卫星云图照片,判别下列不同地区的天气状况。

    1、黄河流域大部分地区是什么天气?(晴天)北京附近是什么天气?(多云或阴天)

    2、长江中下游地区是什么天气?(多云或阴有雨)

    3、范围较大的降水云区出现在什么地方?(江南和华南)

    〔转折过渡〕电视台播放天气预报节目时,卫星云图以后,紧接着电视屏幕上出现的是什么图?

    学生讨论、回答。

    〔归纳总结〕电视屏幕上出现的是天气形势图和天气预报图。

    〔板书〕三、天气预报图

    〔指图讲述〕(P36城市天气预报图)在天气预报图上,用各种各样天气符号表示各地不同的天气状况。而要想看懂这种简易的天气预报图,就需要认识一些天气符号。这样就能自己来判断某一城市的天气状况了。

    〔板书〕1、天气符号

    〔展示板图〕城市天气预报常用的天气符号。

    〔指导学生读图〕请同学们按下列顺序识别各种常见的天气符号:

    (1)晴天、多云、阴天的符号;

    (2)小到中雨、大雨暴雨、雷雨、阵雨、冰雪、雨转晴的符号;

    (3)小雪、中雪、大雪、雨夹雪的符号;

    (4)雾、霜冻符号;

    (5)冷峰、暖峰、台风的符号;

    (6)风向、风力的表示方法。

    〔讲述〕风向是指风吹来的方向(教师边画图边讲解),用符号表示就是:风杆上的小横道叫风尾,风杆上画有风尾的一方,即指示风向,标在风杆的左侧。风级的表示方法是:一道风尾,风力2级,二道风尾是4级风,一个风旗表示8级风。

    学生练习风向、风力的表示方法。

    〔活动〕教师安排学生自己提前制作一套天气符号,并且在课上给出2分钟,请学生快速记忆。以每两个人为一个小组,一个人出示符号,另外一个人说出其意义,然后再交换。

    〔转折过渡〕在识别天气符号的基础上,同学们才能正确判读城市天气预报图。

    〔板书〕2、城市天气预报图

    〔读图〕阅读城市天气预报图(课本图4.3)。由教师和同学合作,当天气预报节目播音员;教师报完城市地名后,由学生回答当地的气温、降水等天气状况。

    〔小结〕同学们,这节课我们学习了有关收听、收看天气预报的内容,主要有两个重点知识,一是如何阅读卫星云图,二是认识常用的天气符号和简易天气预报图的判读。

    〔复习巩固〕

    〔布置作业〕要求学生收听收看当地气象台、站发布的天气预报,并把本地一周的天气预报内容记录下来。

    板书设计

    第四章中国的天气和气侯

    第一节

    一、天气预报的重要性

    二、卫星云图

    蓝色→海洋,绿色→陆地,白色→云雨区

    三、天气预报图

    1、天气符号

    2、探究活动

    记录天气预报

    活动目的:

    帮助学生熟悉各种天气符号;培养学生关注天气的意识;通过连续记录天气这样一件事情,培养学生的耐心和科学精神。

    活动具体安排:

    连续一周收听每日广播里的天气预报,并用符号将结果记录在下表中,包括天气状况及风向、风力等。最后小组内进行核查,看谁记得准确。

    日期

    天气状况(阴、晴、多云等)

    风向

    风力

    简易晴雨表的制作

    目的:通过制作简易晴雨表,以显示睛、阴、雨天湿度变化及提高自己动手能力。

    材料:

    长约50cm,直径2.5cm木棍一根,直径20cm,厚1.5cm圆木盘一块,直径约为2cm的螺丝钉一颗,有机玻璃直尺,半圆尺各一把,一个百事可乐易拉罐,铁钉数颗,白纸一张,铁螺帽、脱脂棉、线、食盐。

    工具:小锤一把,胶水一瓶,小钉锤一把,螺丝刀一把。

    步骤:

    1.用浓盐水浸泡脱脂棉,并烘干。

    2.在木棍一端切一宽6mm,深4cm的小槽。

    3.在有机玻璃直尺正中和两端分别用烧红的铁钉钻一个直径为5mm的小孔。用剪刀从易拉罐上剪下一根长5cm的指针固定在直尺中间。

    4.在开槽的木棍一头,垂直于小槽横面,钻一小孔,把直尺放入小槽内并用螺丝钉固定,但直尺能灵活转动。

    5.把量角器背面用胶水贴上一张同样大小的白纸待干后,用胶水固定在直尺后面的一半木棍上,当刻度盘。

    6.把木棍的另一头用钉子牢固地固定在底部圆木盘上。

    7.把小铁螺帽和烘干的棉球分别用线挂在直尺两端孔中,并调试平衡,使指针指到90°,这样简易晴雨表就做好了。

    8.然后放在通风避雨处,观察几周,在刻度盘读出晴、阴、雨的范围。

    原理:

    盐类物质极易潮解,当空气湿度增大时,盐会吸收空气中的水分,重量增加,指针向右偏。相反,水分蒸发,重量减少,指针向左偏。

    实验观测:

    结果分析:

    1.大致在90°附近5°以内为晴天。

    2.大致在95°—100°之间为多云天气

    3.大致在100°—120°范围内为阴天

    4.大致在120°以上为雨天

    5.通过看指针位置及变化,即可粗略预报天气情况。

    城市天气预报图

    Jk251.coM编辑推荐

    多变的天气


    昌黎县新集镇初级中学王维伟

    一、教学内容和目标

    1、知道“天气”与“气候”的区别,能在生活中正确使用这两个术语。

    2、能识别常用的天气符号,看懂简单的天气图。

    3、用实例说明人类活动对大气的负面影响,以及保护大气环境的重要性。

    4、养成收听、收看广播、电视天气预报节目的习惯,并根据天气预报合理安排自己的活动。

    二、教学重点和难点

    1、知道“天气”与“气候”的区别,能在生活中正确使用这两个术语。

    2、能识别常用的天气符号,看懂简单的天气图。

    三、教法和学法

    教师采用演示图片、谈话、实践、强化和发现等方法

    学生采取视听、讨论发言、小组合作交流、比赛、角色扮演等

    四、教学过程

    1)、导入:“让学生通过网络直接收看全国未来48小时内的天气预报节目(问天网),并做记录,讨论我们秦皇岛的天气情况”这一情境。

    2)提问:“那么谁能来描述一下今天的天气情况呢?(注意描述过程中都用到哪些关键词!)

    3)让学生继续描述给出的三张表示不同天气的图片所反映出来的天气情况,并提出问题:“那么描述天气要从哪些方面来讲呢?天气又有什么特点呢?”

    4)、出示一些民间谚语:“青蛙叫,雨水到。蜻蜓一起飞,表示有暴雨。朝霞暗红雨凄凄,晚霞青白行千里。人黄有病,天黄有雨”。让学生日常生活中能具备看云识天天气的能力,由此提出问题:那么我们怎么来看懂卫星云图和在城市天气预报图上辨别各城市的天气情况呢?

    5)师生共同完成后,让学生先仔细阅读辨别书本和地图册上的天气符号,并组织开展小组天气播报游戏。让学生进行视听、实践、比赛、合作交流等学习活动,使学生真正成为地理学习的主人。

    6)小结:由刚才同学们的发言可见,天气会影响我们的生活,那么除此之外还会影响到哪些方面呢?(出示相关资料)由此让学生议一议天气对人类活动还有哪些影响?7)接着再根据学生的生活提问:“在你的生活中都经历过哪些不同的天气类型呢?对你产生了哪些影响?

    8)。同时设计角色扮演活动:明后天学校将举行秋季运动会,如果你是运动员,班主任、体育教师、校长都有应该充分考虑天气情况,那么你会从哪些方面来作准备呢?

    9)布置作业:天气对我们的生活会有很大影响,那么,我们的活动是否对天气有影响呢?请调查天气对我们农村的生活有什么影响?我们的农业活动对天气又有什么影响?作为未来世界的主人你怎样减小农业活动对天气的影响?

    经典初中教案天气气候


    天气和气候7.8磅02

    天气和气候

    【教学重点】天气预报图的使用、天气与气候的区别

    【教学手段】

    录像:天气预报

    计算机课件:(1)世界主要城市天气预报;(2)天气形势图;(3)各种常用的天气符号图;(4)风向示意图;(5)气象观测仪器----百叶箱、温度计;(6)天气与气候的区别与联系图。

    【教学过程】

    (引课出示投影片1)你能够从投影片中读出哪些内容?

    中央气象台城市天气预报:xx年05月28日20时至05月29日20时

    城市

    教案模板


    2.1比零小的数(2)

    教学目标:

    1.乐于接受数学信息,能用正、负数表示具有相反意义的量

    2.借助生活中的实例理解有理数的意义,通过将有理数分类,感受分类的思想

    重点:能应用正负数表示具有相反意义的量

    难点:运用有理数表示实际生活问题中的量

    教学设计:

    1.情境创设

    情境(1):课本第15页实例

    操作指导:投影出示日常生活中一些表示具有相反意义的量的实例,让学生感受用正负数来描述它们所带来的便捷

    情境(2):学生自己举一些生活中表示具有相反意义的量的实例

    2.探索活动

    (1).由课本中"零上的气温用正数表示,零下的气温用负数表示"入手,指导学生思考日常生活中还有那些意义相反的事例.又如何用正负数表示这些事例的量.这里可设置一些问题引导学生讨论.如:

    ①.零上温度用正数表示,零下温度用负数表示.你能用正负数表示收入与支出、增产与减产等问题中的相关量吗?

    ②.如果某次智力竞赛加100分表示为+100分,则扣50分如何表示?-200分表示什么意思?

    ⑵.课本第16页例2

    ⑶.有理数的概念

    这是学生第一次接触分类,要让学生初步感受分类思想.让学生感受分类的思想及方法以及有理数分类的另一方法:有理数可以分"正有理数,负有理数,0"

    (让学生模仿课本上的形式写出相应的分类表)

    ⑷.课本第16页"练一练"

    3.关于计算器教学

    由于计算器型号不一定一致,因此负数的输入方法也可能略有不同,可以在课内统一指导学生操作,也可以在课外指导学生阅读计算器使用说明书,让学生自行操作

    4.小结

    各小组互相讨论总结,得出本节课的主要内容:如何用正、负数表示一对具有相反意义的量;有理数的分类

    5.布置作业:课本p17习题2.1第3.4.5题

    建湖县建阳中学张仁勇

    上一篇:第二章有理数2.1比零小的数(1)

    下一篇:2.1比0小的数(一)教学设计

    分教案模板


    一、教学目标

    1.使学生理解并掌握分式的概念,了解有理式的概念;

    2.使学生能够求出分式有意义的条件;

    3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

    4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.

    二、重点、难点、疑点及解决办法

    1.教学重点和难点明确分式的分母不为零.

    2.疑点及解决办法通过类比分数的意义,加强对分式意义的理解.

    三、教学过程

    【新课引入】

    前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)

    【新课】

    1.分式的定义

    (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

    用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

    (2)由学生举几个分式的例子.

    (3)学生小结分式的概念中应注意的问题.

    ①分母中含有字母.

    ②如同分数一样,分式的分母不能为零.

    (4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

    2.有理式的分类

    请学生类比有理数的分类为有理式分类:

    例1当取何值时,下列分式有意义?

    (1);

    解:由分母得.

    ∴当时,原分式有意义.

    (2);

    解:由分母得.

    ∴当时,原分式有意义.

    (3);

    解:∵恒成立,

    ∴取一切实数时,原分式都有意义.

    (4).

    解:由分母得.

    ∴当且时,原分式有意义.

    思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

    例2当取何值时,下列分式的值为零?

    (1);

    解:由分子得.

    而当时,分母.

    ∴当时,原分式值为零.

    小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.

    (2);

    解:由分子得.

    而当时,分母,分式无意义.

    当时,分母.

    ∴当时,原分式值为零.

    (3);

    解:由分子得.

    而当时,分母.

    当时,分母.

    ∴当或时,原分式值都为零.

    (4).

    解:由分子得.

    而当时,,分式无意义.

    ∴没有使原分式的值为零的的值,即原分式值不可能为零.

    (四)总结、扩展

    1.分式与分数的区别.

    2.分式何时有意义?

    3.分式何时值为零?

    (五)随堂练习

    1.填空题:

    (1)当时,分式的值为零

    (2)当时,分式的值为零

    (3)当时,分式的值为零

    2.教材p55中1、2、3.

    八、布置作业

    教材p56中a组3、4;b组(1)、(2)、(3).

    九、板书设计

    课题例1

    1.定义例2

    2.有理式分类

    题教案模板


    课时教案

    课题:课题2燃料和热量

    一、教学目标(知识目标、能力目标、情意目标)

    ⒈知识与技能:⑴知道化石燃料是人类重要的自然资源,对人类生活起着重要作用;同时,知道石油炼制出的几种主要产品及其用途。

    ⑵了解化学反应中的能量变化,认识燃料充分燃烧的重要性。

    ⒉过程与方法:通过一些探究活动,进一步认识与体验科学探究的过程。

    ⒊情感态度与价值观:了解化石燃料的不可再生性,认识合理开采和节约使用化石燃料的重要性。

    二、教学重点⒈煤、石油、天然气三大化石燃料

    ⒉化学变化中能量的变化

    难点⒈燃料充分燃烧的条件和意义

    ⒉化学变化中能量的变化

    三、教学模式(或方法):探究活动与教师讲述结合

    四、教学过程

    复习课题1燃烧的条件⑴可燃物

    ⑵氧气(或空气)

    ⑶温度要达到着火点

    教师强调可燃物有许多是燃料,引导学生阅读课本上第一小节,引出三大化石燃料——煤、石油和天然气。

    一、煤、石油和天然气

    煤:是非常复杂的混合物,主要由碳元素组成,还含有氮、硫等元素,讨论回答课本上有关煤的知识中的探究问题。

    教师小结。

    石油:是非常复杂的混合物,主要由碳、氢元素组成,通过一些方法可以炼制得到许多产品,如汽油、煤油、柴油、石蜡等;讨论回答课本上有关石油的知识中的探究问题。

    教师小结。

    天然气:主要成分是甲烷,化学式为ch4,

    做甲烷燃烧的探究实验,提醒学生一定要检验气体的纯度,让学生观察现象,并根据现象判断出甲烷燃烧的产物是水和二氧化碳,并根据该实验推断出甲烷中含有碳元素和氢元素。

    介绍“可燃冰”

    二、燃烧中能量的变化

    做探究实验——镁带和稀盐酸的反应。

    现象:有气泡生成,试管壁发烫。

    结论:镁带和稀盐酸的反应时要放出热量。

    有的化学反应放热,如物质的燃烧、金属和酸的反应

    有的则吸热,如碳和二氧化碳的反应、木炭还原氧化铜等。

    要使燃料充分燃烧的条件:

    一是要有充足的氧气

    二是要和空气有足够大的接触面积。

    教师小结:⑴知道化石燃料是人类重要的自然资源,对人类生活起着重要作用;同时,知道石油炼制出的几种主要产品及其用途。

    ⑵了解化学反应中的能量变化,认识燃料充分燃烧的重要性。

    4.2 教案模板


    教学目标1.在现实情景中深刻理解等式的性质,并能正确运用等式的性质.2.熟练掌握移项法则,利用移项法则解一元一次方程.教学重、难点重点:等式的基本性质,移项法则难点:对等式性质的理解和用移项的法则解方程.教学过程一激情引趣,导入新课解方程:2x-5=3x+6你能说出你解这个方程每一步的依据吗?(一个加数等于和减去_______.)(导入新课:在小学我们学习了解方程,依据是加数与和的关系,因数与积的关系,还有没有别的依据呢?)二合作交流,探究新知1等式的性质问题1(一)班的学生人数等于(二)班的学生人数,现在每班增加2名学生,那么(一)班与(二)班的学生人数还相等吗?如果每班减少了3名学生,那么两个班的学生人数还相等吗?如果(-)班人数为a人,(二)班人数为b人,上面问题用含有a、b的式子怎样表示?问题2如果甲筐米的重量=乙筐米的重量,现在把甲、乙两筐的米分别倒出一半,那么甲,乙两筐剩下的米的重量相等吗?如果设甲筐米的重量为a,乙筐米的重量为b,上面问题用式子怎么表示?从上面两个问题,可以发现等式有什么性质?等式的性质1等式两边都______(或者减去)_________(或同一个式子)所得结果仍是____.等式的性质2等式两边都______(或者除以)_________(或同一个式子)(除数或者除式不能为0),所得结果仍是____.你能用式子表达等式的性质吗?2尝试练习做一做(1)说一说下面等式变形的根据①从x=y得到x+4=y+4,②从a=b得到a+10=b+10③从2x=3x-6得到2x-3x=3x-6-3x④从3x=9得到x=3,⑤从得到x=8用等式的性质解方程:4x+4=3x+12归纳:(1)什么叫移项?把方程的某一项改变____后从方程的一边移到另一边叫______看看下面的变形是移项吗?2x+5-3x+6=9,解:2x-3x+5+6=9练一练用移项的方法解方程12x=x+323x-1=40+2x三应用迁移,巩固提高1实际应用例1(我国古代数学问题)用绳子量井深,把绳子3折来量,井外余绳子4尺;把绳子4折来量,井外余绳子1尺,于是量井人说:“我知道这口井有多深了”。你能算出这口井的深度吗?(做完后交流讨论)2游戏:请你任意圈出下面日历中竖列上三个相邻的数,求出它们的和并告诉我,我就知道你圈出的是哪三个数。四课堂练习,巩固提高1如果单项式与是同类项,则n=___,m=____2如果代数式3x-5与1-2x的值互为相反数,那么x=____3若方程3x-5=4x+1与3m-5=4(m+x)-2m的解相同,求的值p1091,2五反思小结,拓展提高这一节你有什么收获?作业p118,1、2、3

    命题教案模板


    教学建议

    (一)教材分析

    1、知识结构

    2、重点、难点分析

    重点:找出的题设和结论.因为找出一个的题设和结论,是对该深刻理解的前提,而对理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础.

    难点:找出一个的题设和结论.因为理解和掌握一个,一定要分清它的题设和结论,所以找出一个的题设和结论是十分重要的问题.但有些的题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果……那么……”形式的,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点.

    (二)教学建议

    1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解的概念、找出一个的题设和结论,并能判断一些简单的真假.

    2、是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:

    (1)假可分为两类情况:

    ①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的.

    ②题设有多种情形,其中至少有一种情形的结论是错误的.例如,“内错角互补,两直线平行”这个的题设可分为两种情形:第一种情形是两个内错角都等于90°,这时两直线平行;第二种情形是两个内错角不都等于90°,这时两直线不平行.整体说来,这是错误的.

    (2)是否是:

    的定义包括两层涵义:①必须是一个完整的句子;②这个句子必须对某件事情做出肯定或者否定的判断.即是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成.

    另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的平行线.”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是.

    (3)的组成

    每个都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.常写成“如果…,那么…”的形式.具有这种形式的中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.

    有些,没有写成“如果…,那么…”的形式,题设和结论不明显.对于这样的,要经过分折才能找出题设和结论,也可以将它们改写成“如果…那么…”的形式.

    另外的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;的结论部分,有时也可用“求证……”或“则……”等形式表述.

    教学设计示例1

    教学目标

    1.使学生对、真、假等概念有所理解.

    2.使学生理解几何的组成,能够区分的题设和结论两部分,并能将改写成“如果……,那么……”的形式.

    3.会判断一些的真假.

    教学重点和难点

    本节的重点和难点是:找出一个的题设和结论.

    教学过程设计

    一、分析语句,理解

    1.教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:

    (1)我是中国人.

    (2)我家住在北京.

    (3)你吃饭了吗?

    (4)两条直线平行,内错角相等.

    (5)画一个45°的角.

    (6)平角与周角一定不相等.

    2.找出哪些是判断某一件事情的句子?

    学生答:(1),(2),(4),(6).

    3.教师给出的概念,并举例.

    :判断一件事情的句子,叫做,分析(3),(5)为什么不是.

    教师分析以上中,每句话都判断什么事情.所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清.在数学课中,只研究数学,请学生举几个数学的例子,每组再选一个同学说.(不要让说过的再说)

    如:

    (1)对顶角相等.

    (2)等角的余角相等.

    (3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线.

    (4)如果a>0,b>0,那么a+b>0.

    (5)当a>0时,|a|=a.

    (6)小于直角的角一定是锐角.

    在学生举例的基础上,教师有意说出以下两个例子,并问这是不是.

    (7)a>0,b>0,a+b=0.

    (8)2与3的和是4.

    有些学生可能给与否定,这时教师再与学生共同回忆的定义,加以肯定,先不要给出假的概念,而是从“判断”的角度来加深对这一概念的理解.

    4.分析的构成,改写的形式.

    例两条直线平行,同位角相等.

    (l)分析此的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为“题设”,由已知推出的事项为“结论”.

    (2)改写的形式.

    由于题设是条件,可以写成“如果……”的形式,结论写成“那么……”的形式,所以上述可以改写成“如果两条平行线被第三条直线所截,那么同位角相等.”

    请同学们将下列写成“如果……,那么……”的形式,例:

    ①对顶角相等.

    如果两个角是对顶角,那么它们相等.

    ②两条直线平行,内错角相等.

    如果两条直线平行,那么内错角相等.

    ③等角的补角相等.

    如果两个角是等角,那么它们的补角相等.(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等.)

    以上三个的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等.”

    提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出.

    如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:

    “如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直.”

    二、分析,理解真、假

    1.让学生分析两个的不同之处.

    (l)若a>0,b>0,则a+b>0.

    (2)若a>0,b>0,则a+b<0.

    相同之处:都是.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论.

    不同之处:(1)中的结论是正确的,(2)中的结论是错误的.

    教师及时指出:同学们发现了的两种情况.结论是正确的或结论是错误的,那么我们就有了对的一种分类:真和假.

    2.给出真、假定义.

    真:如果题设成立,那么结论一定成立,这样的,叫做真.

    假:如果题设成立,结论不成立,这样的都是错误的,叫做假.

    注意:

    (1)真中的“一定成立”不能有一个例外,如:“a≥0,b>0,则ab>0”.显然当a=0时,ab>0不成立,所以该题是假,不是真.

    (2)假中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时不正确,所以也是假。

    (3)注意与假的区别.如:“延长直线AB”.这本身不是.也更不是假.

    (4)是一个判断,判断的结果就有对错之分.因此就要引入真假,强调真假的大前提,首先是.

    3.运用概念,判断真假.

    例请判断以下的真假.

    (1)若ab>0,则a>0,b>0.

    (2)两条直线相交,只有一个交点.

    (3)如果n是整数,那么2n是偶数.

    (4)如果两个角不是对顶角,那么它们不相等.

    (5)直角是平角的一半.

    解:(l)(4)都是假,(2)(3)(5)是真.

    4.介绍一个不辨真伪的.

    “每一个大于4的偶数都可以表示成两个质数之和”.(即著名的哥德巴赫猜想)

    我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确.我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”.即已经证明了“1+2”,离“1+1”只差“一步之遥”.所以这个的真假还不能做最好的判定.

    5.怎样辨别一个的真假.

    (l)实际生活问题,实践是检验真理的唯一标准.

    (2)数学中判定一个是真,要经过证明.

    (3)要判断一个是假,只需举一个反例即可.

    三、总结

    师生共同回忆本节的学习内容.

    1.什么叫?真?假?

    2.是由哪两部分构成的?

    3.怎样将写成“如果……,那么……”的形式.

    4.初步会判断真假.

    教师提示应注意的问题:

    1.与真、假的关系.

    2.抓住的两部分构成,判断一些语句是否为.

    3.中的题设条件,有两个或两个以上,写“如果”时应写全面.

    4.判断假,只需举一个反例,而判断真,数学问题要经过证明.

    四、作业

    1.选用课本习题.2.以下供参选用.

    (1)指出下列语句中的.

    ①我爱祖国.

    ②直线没有端点.

    ③作∠AOB的平分线OE.

    ④两条直线平行,一定没有交点.

    ⑤能被5整除的数,末位一定是0.

    ⑥奇数不能被2整除.

    ⑦学习几何不难.

    (2)找出下列各句中的真.

    ①若a=b,则a2=b2.

    ②连结A,B两点,得到线段AB.

    ③不是正数,就不会大于零.

    ④90°的角一定是直角.

    ⑤凡是相等的角都是直角.

    (3)将下列写成“如果……,那么……”的形式.

    ①两条直线平行,同旁内角互补.

    ②若a2=b2,则a=b.

    ③同号两数相加,符号不变.

    ④偶数都能被2整除.

    ⑤两个单项式的和是多项式.

    矩形教案模板


    一、教学目标

    1.掌握矩形的定义,知道矩形与平行四边形的关系.

    2.掌握矩形的性质定理.

    3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.

    4.通过性质的学习,体会矩形的应用美.

    二、教法设计

    观察、启发、总结、提高,类比探讨,讨论分析,启发式.

    三、重点、难点及解决办法

    1.教学重点:矩形的性质及其推论.

    2.教学难点:矩形的本质属性及性质定理的综合应用.

    四、课时安排

    1课时

    五、教具学具准备

    教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

    六、师生互动活动设计

    教具演示、创设情境,观察猜想,推理论证

    七、教学步骤

    【复习提问】

    什么叫平行四边形?它和四边形有什么区别?

    【引入新课】

    我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形——矩形(写出课题).

    【讲解新课】

    制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).

    矩形的性质:

    既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.

    继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明.引导学生利用平行四边形角的性质证明得出.

    矩形性质定理1:矩形的四个角都是直角.

    矩形性质定理2:矩形对角线相等.

    由矩形性质定理2我们可以得到

    推论:直角三角形斜边上的中线等于斜边的一半.

    (这实际上是△的一个重要性质,即△斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)

    例1已知如图1矩形的两条对角线相交于点,,,求矩形对角线的长.(按教材的格式)

    (强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)

    【总结、扩展】

    1.小结:(用投影打出)

    (1)矩形、平行四边形、四边形从属关系如图.

    (2)矩形性质.

    1.具有平行四边形的所有性质.

    2.特有性质:四个角都是直角,对角线相等.

    3.思考题:已知如图,是矩形对角线交点,平分,,求的度数

    八、布置作业

    教材P158中2、5,P195中7.

    九、板书设计

    十、随堂练习

    教材P146中1、2、3、4

    矩形教学示例第二课时

    一、教学目标

    1.掌握矩形的性质定理.

    2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

    二、教法设计

    观察、启发、总结、提高,类比探讨,讨论分析,启发式.

    三、重点、难点及解决办法

    1.教学重点:矩形的判定.

    2.教学难点:矩形的判定及性质的综合应用.

    四、课时安排

    1课时

    五、教具学具准备

    教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

    六、师生互动活动设计

    教具演示、创设情境,观察猜想,推理论证

    七、教学步骤

    【复习提问】

    1.什么叫做平行四边形?什么叫做矩形?

    2.矩形有哪些性质?

    3.矩形与平行四边形有什么共同之处?有什么不同之处?

    【引入新课】

    1.矩形的判定.

    2.矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法.

    【讲解新课】

    1.矩形判定定理

    矩形判定定理1:有三个角是直角的四边形是矩形.

    矩形判定定理2:对角钱相等的平行四边形是矩形.

    分析判定定理1

    教师问:四边形内角和等于多少度?根据四边形内角和定理,可知第四个角是多少度?最后由定义知此四边形为矩形.

    分析判定定理2

    教师问:如图1,这个定理有几个条件?学生答;有两个.(1)是平行四边形,(2)两条对角线相等.

    教师问:据此只需征什么就可以了?

    学生答:只要证一个角是直角就可以了.

    引导学生完成证明.

    教师问:两条对角线相等的四边形是不是矩形?

    学生答:不是.

    教师问:为什么?

    学生答:因为两条对角线相等,推不出四边形是平行四边形.

    归纳矩形判定方法(由学生小结):

    (1)一个角是直角的平行四边形.

    (2)对角线相等的平行四边形.

    (3)有三个角是直角的四边形.

    2.矩形判定方法的实际应用

    除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.

    3.矩形知识的综合应用

    例2已知的对角线,相交于,△是等边三角形,,求这个平行四边形的面积(图2).

    分析解题思路:

    (1)先判定为矩形.

    (2)求出△的直角边的长.

    (3)计算.

    【总结、扩展】

    1.小结

    (1)矩形的判定方法l、2都是有两个条件:

    ①是平行四边形,②有一个角是直角或对角线相等.

    判定方法3的两个条件是:①是四边形,②有三个直角.

    (2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.

    2.思考题:已知:如图3中,以为斜边作△,又为直角.求证:四边形是矩形.

    八、布置作业

    教材P158中3、4,P159中13(1);P196中8

    九、板书设计

    矩形(二)

    矩形的判定小结

    判定定理1:……例2……(1)……

    判定定理2:……(2)……

    十、随堂练习

    教材P148中1、2

    补充

    1.若是四边形对角线的交点,且,则四边形是()

    A.平行四边形B.矩形C.梯形D.以上答案均不对

    2.已知:在四边形中,,且

    求证:四边形是矩形

    3.已知中,,,,

    求证:四边形是矩形

    圆教案模板


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:①点和的三种位置关系,的有关概念,因为它们是研究的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备.

    难点:①的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.

    2、教法建议

    本节内容需要4课时

    第一课时:的定义和点和的位置关系

    (1)让学生自己画,自己给下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给下定义(参看教案(一));

    (2)点和的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识.

    第二课时:的有关概念

    (1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;

    (2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.

    第三、四课时:点的轨迹

    条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则.

    第一课时:(一)

    教学目标:

    1、理解的描述性定义,了解用集合的观点对的定义;

    2、理解点和的位置关系和确定的条件;

    3、培养学生通过动手实践发现问题的能力;

    4、渗透“观察→分析→归纳→概括”的数学思想方法.

    教学重点:点和的关系

    教学难点:以点的集合定义所具备的两个条件

    教学方法:自主探讨式

    教学过程设计(总框架):

    一、创设情境,开展学习活动

    1、让学生画、描述、交流,得出的第一定义:

    定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做.固定的端点O叫做心,线段OA叫做半径.记作⊙O,读作“O”.

    2、让学生观察、思考、交流,并在老师的指导下,得出的第二定义.

    从旧知识中发现新问题

    观察:

    共性:这些点到O点的距离相等

    想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?

    (1)上各点到定点(心O)的距离都等于定长(半径的长r);

    (2)到定点距离等于定长的点都在上.

    定义2:是到定点距离等于定长的点的集合.

    3、点和的位置关系

    问题三:点和的位置关系怎样?(学生自主完成得出结论)

    如果的半径为r,点到心的距离为d,则:

    点在上d=r;

    点在内d

    点在外d>r.

    “数”“形”

    二、例题分析,变式练习

    练习:已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.

    例1求证:矩形的四个顶点在以对角线的交点为心的同一个上.

    已知(略)

    求证(略)

    分析:四边形ABCD是矩形

    A=OC,OB=OD;AC=BDOA=OC=OB=OD要证A、B、C、D4个点在以O为心的上证明:∵四边形ABCD是矩形∴OA=OC,OB=OD;AC=BD∴OA=OC=OB=OD∴A、B、C、D4个点在以O为心,OA为半径的上.符号的应用(要求学生了解)证明:四边形ABCD是矩形OA=OC=OB=ODA、B、C、D4个点在以O为心,OA为半径的上.小结:要证几个点在同一个上,可以证明这几个点与一个定点的距离相等.问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个上.(让学生探讨)练习1求证:菱形各边的中点在同一个上.(目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成)练习2设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形.(1)和点A的距离等于2cm的点的集合;(2)和点B的距离等于2cm的点的集合;(3)和点A,B的距离都等于2cm的点的集合;(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)三、课堂小结问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:(1)主要学习了的两种不同的定义方法与的三种位置关系;(2)在用点的集合定义时,必须注意应具备两个条件,二者缺一不可;(3)注重对数学能力的培养四、作业82页2、3、4.第二课时:(二)教学目标1、使学生理解弦、弧、弓形、同心、等、等孤的概念;初步会运用这些概念判断真假命题。2、逐步培养学生阅读教材、亲自动手实践,总结出新概念的能力;进一步指导学生观察、比较、分析、概括知识的能力。3、通过动手、动脑的全过程,调动学生主动学习的积极性,使学生从积极主动获得知识。教学重点、难点和疑点1、重点:理解的有关概念.2、难点:对“等”、“等弧”的定义中的“互相重合”这一特征的理解.3、疑点:学生容易把长度相等的两条弧看成是等弧。让学生阅读教材、理解、交流和与教师对话交流中排除疑难。教学过程设计:(一)阅读、理解重点概念:1、弦:连结上任意两点的线段叫做弦.2、直径:经过心的弦是直径.3、弧:上任意两点间的部分叫做弧.简称弧.半弧:的任意一条直径的两个端点分成两条弧,每一条弧叫做半;优弧:大于半的弧叫优弧;劣弧:小于半的弧叫做劣弧.4、弓形:由弦及其所对的弧组成的图形叫做弓形.5、同心:即心相同,半径不相等的两个叫做同心.6、等:能够重合的两个叫做等.7、等弧:在同或等中,能够互相重合的弧叫做等弧.(二)小组交流、师生对话问题:1、一个有多少条弦?最长的弦是什么?2、弧分为哪几种?怎样表示?3、弓形与弦有什么区别?在一个中一条弦能得到几个弓形?4、在等、等弧中,“互相重合”是什么含义?(通过问题,使学生与学生,学生与老师进行交流、学习,加深对概念的理解,排除疑难)(三)概念辨析:判断题目:(1)直径是弦()(2)弦是直径()(3)半是弧()(4)弧是半()(5)长度相等的两段弧是等弧()(6)等弧的长度相等()(7)两个劣弧之和等于半()(8)半径相等的两个半是等弧()(主要理解以下概念:(1)弦与直径;(2)弧与半;(3)同心、等指两个图形;(4)等、等弧是互相重合得到,等弧的条件作用.)(四)应用、练习例1、已知:如图,AB、CB为⊙O的两条弦,试写出图中的所有弧.解:一共有6条弧.、、、、、.(目的:让学生会表示弧,并加深理解优弧和劣弧的概念)例2、已知:如图,在⊙O中,AB、CD为直径.求证:AD∥BC.(由学生分析,学生写出证明过程,学生纠正存在问题.锻炼学生动口、动脑、动手实践能力,调动学生主动学习的积极性,使学生从积极主动获得知识.)巩固练习:教材P66练习中2题(学生自己完成).(五)小结教师引导学生自己做出总结:1、本节所学似的知识点;2、概念理解:①弦与直径;②弧与半;③同心、等指两个图形;④等和等弧.3、弧的表示方法.(六)作业教材P66练习中3题,P82习题l(3)、(4).第三、四课时(三)——点的轨迹教学目标1、在了解用集合的观点定义的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;2、培养学生从形象思维向抽象思维的过渡;3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。重点、难点1、重点:对点的轨迹的认识。2、难点:对点的轨迹概念的认识,因为这个概念比较抽象。教学活动设计(在老师与学生的交流对话中完成教学目标)(一)创设学习情境1、对的形成观察——理解——引出轨迹的概念(使学生在老师的引导下从感性知识到理性知识)观察:是到定点的距离等于定长的的点的集合;(电脑动画)理解:上的点具有两个性质:(1)上各点到定点(心O)的距离都等于定长(半径的长r);(2)到定点距离等于定长的的点都在上;(结合下图)引出轨迹的概念:我们把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.(轨迹的概念非常抽象,是教学的难点,这里教师要精讲,细讲)上面左图符合(1)但不符合(2);中图不符合(1)但符合(2);只有右图(1)(2)都符合.因此“到定点距离等于定长的点的轨迹”是.轨迹1:“到定点距离等于定长的点的轨迹,是以定点为心,定长为半径的”。(研究是轨迹概念的切入口、基础和关键)(二)类比、研究1(在老师指导下,通过电脑动画,学生归纳、整理、概括、迁移,获得新知识)轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线;轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线;(三)巩固概念练习:画图说明满足下列条件的点的轨迹:(1)到定点A的距离等于3cm的点的轨迹;(2)到∠AOC的两边距离相等的点的轨迹;(3)经过已知点A、B的O,心O的轨迹.(A层学生独立画图,回答满足这个条件的轨迹是什么?归纳出每一个题的点的轨迹属于哪一个基本轨迹;B、C层学生在老师的指导或带领下完成)(四)类比、研究2(这是第二次“类比”,目的:使学生的知识和能力螺旋上升.这次通过电脑动画,使A层学生自己做,进一步提高学生归纳、整理、概括、迁移等能力)轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的两条直线;轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.(五)巩固训练练习题1:画图说明满足下面条件的点的轨迹:1.到直线l的距离等于2cm的点的轨迹;2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹.(A层学生独立画图探索;然后回答出点的轨迹是什么,对B、C层学生回答有一定的困难,这时教师要从规律上和方法上指导学生)练习题2:判断题1、到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.()2、和点B的距离等于5cm的点的轨迹,是到点B的距离等于5cm的.()3、到两条平行线的距离等于8cm的点的轨迹,是和这两条平行线的平行且距离等于8cm的一条直线.()4、底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.()(这组练习题的目的,训练学生思维的准确性和语言表达的正确性.题目由学生自主完成、交流、反思)(教材的练习题、习题即可,因为这部分知识属于选学内容,而轨迹概念又比较抽象,不要对学生要求太高,了解就行、理解就高要求)(六)理解、小结(1)轨迹的定义两层意思;(2)常见的五种轨迹。(七)作业教材P82习题2、6.探究活动爱尔特希问题在平面上有四个点,任意三点都可以构成等腰三角形,你能找到这样的四点吗?分析与解:开始自然是尝试、探索,主要应以如何构造出这样的点来考虑.最容易想到的是,使一个点到另三个点等距离,换句话说,以一个点为心,作一个,其他三个点在此上寻找,只要使这上的三点构成等腰三角形即可,于是得到如图中的上面两种形式.其次,取边长都相等的四边形,即为菱形的四个顶点(见图中第3个图).最后,取梯形ABCD,其中AB=BC=CD,且AD=BD=AC,但是这样苛刻条件的梯形存在吗?实际上,只要将任一周5等分,取其中任意四点即可(见图中的第4个图).综上所述,符合题意的四点有且仅有三种构形:①任意等腰三角形的三个顶点及其外接心(即外心);②任意菱形的4个顶点;③任意正五边形的其中4个顶点.上述问题是大数学家爱尔特希(P.Erdos)提出的:“在平面内有n个点,其中任意三点都能构成等腰三角形”中n=4的情形.当n=3、4、5、6时,爱尔特希问题都有解.已经证明,时,问题无解.

    Unit教案模板


    lesson3重点句子:ienjoyswimming.我喜欢游泳。swimming在该句中为动名词,性质相当于名词,作谓语动词enjoy的宾语。常可接动名词做宾语的动词还有:likedoing喜欢做……;hatedoing厌恶做……;preferdoing更喜欢做……;finishdoing完成做……;keepdoing不断做……;minddoing介意做……;practicedoing练习做……等。

    lesson4重点解析:1.重点短语playwithfriends和朋友一起玩watchtvlate看电视到很晚onthebeach在海滩上somany这么多eatsoup喝汤allnight整夜stayhealthy保持健康lastnight昨晚gotoamovie去看电影helpsb.aroundthehouse帮某人做家务2.重点语法使役动词let,make,have以及help的用法与区别:使役动词是表示使、令、让、帮、叫等意思的不完全及物动词,主要有let、make、have以及help等。let表示“让某人如何”,make有“强迫,强制,别无选择”的意思,have表示一种要求,help表示“帮助某人……”结构:make/let/have/help+sb.+动词原形

    【典型例题】一.根据句意用动词填空1.mymothermedomyhomeworkeveryday.2.myparentsmedosportafterdinner.3.theteachermesitinfrontofher.4.exercisemekeephealthy.二.选词填空1.myteacherhadme(clean/cleaning)classroom.2.mybrotherhelpedme(study/tostudy)english.3.myfatherletsme(go/togo)tothemovies.4.imadethem(stand/tostand)nearthedoor.答案:一.1.makes2.let3.has4.helps二、1.clean2.study3.go4.stand

    【收听天气预报教案模板】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...