你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >溶解度曲线的意义及其应用初中教案精选
  • 溶解度曲线的意义及其应用初中教案精选

    发表时间:2022-02-27

    【www.jk251.com - 溶解度曲线的意义及其应用】

    一名优秀的初中老师肯定有一份准备充分的教案,多写教案能够提升我们的策划能力,可以通过编写教案认识自己教学的优点和不足。什么样的初中教案比较高质量?下面是由小编为大家整理的溶解度曲线的意义及其应用初中教案精选,仅供参考,欢迎大家阅读。

    溶解度曲线的意义与应用可从点、线、面和交点四方面来分析。

    1.点

    溶解度曲线上的每个点表示的是某温度下某种物质的溶解度。即曲线上的任意一点都对应有相应的温度和溶解度。温度在横坐标上可以找到,溶解度在纵坐标上可以找到。溶解度曲线上的点有三个方面的作用:(1)根据已知温度查出有关物质的溶解度;(2)根据物质的溶解度查出对应的温度;(3)比较相同温度下不同物质溶解度的大小或者饱和溶液中溶质的质量分数的大小。

    2.线

    溶解度曲线表示某物质在不同温度下的溶解度或溶解度随温度的变化情况。曲线的坡度越大,说明溶解度受温度影响越大;反之,说明受温度影响较小。溶解度曲线也有三个方面的应用:(1)根据溶解度曲线,可以看出物质的溶解度随着温度的变化而变化的情况。(2)根据溶解度曲线,比较在一定温度范围内的物质的溶解度大小。(3)根据溶解度曲线,选择分离某些可溶性混合物的方法。

    3.面

    对于曲线下部面积上的任何点,依其数据配制的溶液为对应温度时的不饱和溶液;曲线上部面积上的点,依其数据配制的溶液为对应温度时的饱和溶液,且溶质有剩余。如果要使不饱和溶液(曲线下部的一点)变成对应温度下的饱和溶液,方法有两种:第一种方法是向该溶液中添加溶质使之到达曲线上;第二种方法是蒸发一定量的溶剂。

    4.交点

    两条溶解度曲线的交点表示该点所示的温度下两物质的溶解度相同,此时两种物质饱和溶液的溶质质量分数也相同。

    例题(98年广西区)x、y、z三种固体物质的溶解度曲线见右图。

    下列说法中,不正确的是()。

    (a)分别将x、y、z的饱和溶液的温度从t2℃降低到t1℃,只有z无晶体析出

    (b)t1℃时,用l00克水配制相同质量、相同溶质质量分数的x、y、z的溶液,所需溶质质量最多不超过sy

    (c)当x中含有少量y时,可用结晶法提纯x

    (d)t2℃时,三种物质的饱和溶液中溶质的质量分数x y z

    解析这是一道难度较大的综合选择题,它综合了饱和溶液、不饱和溶液、蒸发结晶、物质的提纯及质量分数与溶解度的换算等知识。解题的关键是看懂溶解度曲线图并明确溶解度曲线的意义。

    (a)从曲线图可知,只有z物质的溶解度随温度的升高而减少,故降低温度时,x、y的饱和溶液均有晶体析出,而z没有。

    (b)在t1℃时,x、y、z的溶解度分别为sx、sy、sz,如需配制相同质量、相同质量分数的溶液,其溶质质量最多不超过sx,不是sy。

    (c)当x中混有少量y时,由于x的溶解度随温度的变化有显著的改变,而y的溶解度随温度变化基本上不变,故可用结晶法提纯x。

    (d)在t2℃时,x、y、z的溶解度大小顺序是sx sy sz,故饱和溶液中溶质的质量分数也是x y z.

    综合上述,不正确的说法是(b)。

    jK251.COm精选阅读

    指数函数与对数函数的性质及其应用


    课题:指数函数与对数函数的性质及其应用

    课型:综合课

    教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

    重点:指数函数与对数函数的特性。

    难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

    教学方法:多媒体授课。

    学法指导:借助列表与图像法。

    教具:多媒体教学设备。

    教学过程:

    一、复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

    二、展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

    指数函数与对数函数关系一览表

    函数

    性质

    指数函数

    y=ax(a>0且a≠1)

    对数函数

    y=logax(a>0且a≠1)

    定义域

    实数集R

    正实数集(0,﹢∞)

    值域

    正实数集(0,﹢∞)

    实数集R

    共同的点

    (0,1)

    (1,0)

    单调性

    a>1增函数

    a>1增函数

    0<a<1减函数

    0<a<1减函数

    函数特性

    a>1

    当x>0,y>1

    当x>1,y>0

    当x<0,0<y<1

    当0<x<1,y<0

    0<a<1

    当x>0,0<y<1

    当x>1,y<0

    当x<0,y>1

    当0<x<1,y>0

    反函数

    y=logax(a>0且a≠1)

    y=ax(a>0且a≠1)

    图像

    Y

    y=(1/2)xy=2x

    (0,1)

    X

    Y

    y=log2x

    (1,0)

    X

    y=log1/2x

    三、同一坐标系中将指数函数与对数函数进行合成,观察其特点,并得出y=log2x与y=2x、y=log1/2x与y=(1/2)x的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

    Y

    y=(1/2)xy=2xy=x

    (0,1)y=log2x

    (1,0)X

    y=log1/2x

    注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

    四、利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

    五、例题

    例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。

    解:∵y=ax中,a=Л>1

    ∴此函数为增函数

    又∵﹣0.1>﹣0.5

    ∴(Л)(-0.1)>(Л)(-0.5)

    例⒉比较log67与log76的大小。

    解:∵log67>log66=1

    log76<log77=1

    ∴log67>log76

    注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

    例⒊求y=3√4-x2的定义域和值域。

    解:∵√4-x2有意义,须使4-x2≥0

    即x2≤4,|x|≤2

    ∴-2≤x≤2,即定义域为[-2,2]

    又∵0≤x2≤4,∴0≤4-x2≤4

    ∴0≤√4-x2≤2,且y=3x是增函数

    ∴30≤y≤32,即值域为[1,9]

    例⒋求函数y=√log0.25(log0.25x)的定义域。

    解:要函数有意义,须使log0.25(log0.25x)≥0

    又∵0<0.25<1,∴y=log0.25x是减函数

    ∴0<log0.25x≤1

    ∴log0.251<log0.25x≤log0.250.25

    ∴0.25≤x<1,即定义域为[0.25,1)

    六、课堂练习

    求下列函数的定义域

    1.y=8[1/(2x-1)]

    2.y=loga(1-x)2(a>0,且a≠1)

    七、评讲练习

    八、布置作业

    第113页,第10、11题。并预习指数函数与对数函数

    在物理、社会科学中的实际应用。

    数学教案-指数函数与对数函数的性质及其应用教案模板


    教案

    课题:指数函数与对数函数的性质及其应用

    课型:综合课

    教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

    重点:指数函数与对数函数的特性。

    难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

    教学方法:多媒体授课。

    学法指导:借助列表与图像法。

    教具:多媒体教学设备。

    教学过程:

    一、复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

    二、展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

    指数函数与对数函数关系一览表

    函数

    性质

    指数函数

    y=ax(a>0且a≠1)

    对数函数

    y=logax(a>0且a≠1)

    定义域

    实数集r

    正实数集(0,﹢∞)

    值域

    正实数集(0,﹢∞)

    实数集r

    共同的点

    (0,1)

    (1,0)

    单调性

    a>1增函数

    a>1增函数

    0<a<1减函数

    0<a<1减函数

    函数特性

    a>1

    当x>0,y>1

    当x>1,y>0

    当x<0,0<y<1

    当0<x<1,y<0

    0<a<1

    当x>0,0<y<1

    当x>1,y<0

    当x<0,y>1

    当0<x<1,y>0

    反函数

    y=logax(a>0且a≠1)

    y=ax(a>0且a≠1)

    图像

    y

    y=(1/2)xy=2x

    (0,1)

    x

    y

    y=log2x

    (1,0)

    x

    y=log1/2x

    三、同一坐标系中将指数函数与对数函数进行合成,观察其特点,并得出y=log2x与y=2x、y=log1/2x与y=(1/2)x的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

    y

    y=(1/2)xy=2xy=x

    (0,1)y=log2x

    (1,0)x

    y=log1/2x

    注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

    四、利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

    五、例题

    例⒈比较(л)(-0.1)与(л)(-0.5)的大小。

    解:∵y=ax中,a=л>1

    ∴此函数为增函数

    又∵﹣0.1>﹣0.5

    ∴(л)(-0.1)>(л)(-0.5)

    例⒉比较log67与log76的大小。

    解:∵log67>log66=1

    log76<log77=1

    ∴log67>log76

    注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

    例⒊求y=3√4-x2的定义域和值域。

    解:∵√4-x2有意义,须使4-x2≥0

    即x2≤4,|x|≤2

    ∴-2≤x≤2,即定义域为[-2,2]

    又∵0≤x2≤4,∴0≤4-x2≤4

    ∴0≤√4-x2≤2,且y=3x是增函数

    ∴30≤y≤32,即值域为[1,9]

    例⒋求函数y=√log0.25(log0.25x)的定义域。

    解:要函数有意义,须使log0.25(log0.25x)≥0

    又∵0<0.25<1,∴y=log0.25x是减函数

    ∴0<log0.25x≤1

    ∴log0.251<log0.25x≤log0.250.25

    ∴0.25≤x<1,即定义域为[0.25,1)

    六、课堂练习

    求下列函数的定义域

    1.y=8[1/(2x-1)]

    2.y=loga(1-x)2(a>0,且a≠1)

    七、评讲练习

    八、布置作业

    第113页,第10、11题。并预习指数函数与对数函数

    在物理、社会科学中的实际应用。

    经典初中教案相切在作图中的应用


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础.

    难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置的确定.

    2、教法建议

    (1)在教学中,组织学生寻找一些身边的有关“连接”的实际问题,画出比例图,既调动学生的积极性,培养了兴趣,又获得了知识;

    (2)在教学中,以“实际问题——概念引出——理解——实际应用”为主线,开展在教师组织下,以学生为主体,活动式教学.(一)

    教学目标:

    (1)理解线段与弧、弧与弧连接的概念及连接的原理;

    (2)通过对“连接”等概念的教学,培养学生的理解能力;

    (3)通过线段与弧的连接,圆弧与圆弧的连接,培养学生的作图能力;

    (4)“渗透”世界上很多事物是互相联系着的,并且在一定条件下相互转化.

    教学重点:

    正确理解连接的原理,初步掌握线段与圆弧连接、圆弧与圆弧连接的实质,会进行各种连接.

    教学难点:

    连接原理的正确理解和作图时圆心、半径的确定

    教学活动设计:

    (一)实际问题引出概念

    我们在生活中常见到一些机器零件,它的边缘是圆滑的,我们最熟悉的操场上的跑道,它的跑道线也是很圆滑的.

    想一想:跑道线是怎样的线组成的?

    画一画:跑道的大致图形.

    指导学生发现线线的位置关系,引出连接的有关概念:

    1、由一条线(线段或圆弧)平滑地过渡到另一条线上,这种平滑地过渡,称圆弧连接,简称连接.

    2、连接时,线段与圆弧、圆弧与圆弧在连接处相切.

    3、外连接、内连接.

    组织学生阅读理解教材内容

    (二)深刻理解概念

    “连接”是“平滑地过渡”,怎样算“平滑“?像下面图中,实线画出的线段和圆弧,圆弧和圆弧,虽然也有相切的关系,但它们不是连接.

    理解:线与线连接有两个必备条件:①连接时,线段与圆弧,圆弧与圆弧在连接处相切.②线段与圆弧应分居在圆心与切点所在直线的两侧;圆弧与圆弧分居在连心线的两侧,二者缺一不可.

    (三)圆弧与线段、圆弧与圆弧连接图形的画法

    例1:已知:线段AB和r(如图).

    求作:,使它的半径等于r,,并且在点A与线段AB连接.

    作法:1、过点A作直线PA⊥AB.

    2、在射线AP取AO=r.

    3、以O为圆心,r为半径作,使AB、在OA的两侧.

    就是所求作的弧.

    说明:画圆弧与线段的连接,主要运用了切线的性质定理的推论2:经过切点且垂直于切线的直线必过圆心,找出了圆心,圆弧也就不难画了.

    例2、已知:如图,的半径为R1,圆心为O1;线段R2.

    求作:半径为R2的,使与在点A外连接.

    作法:1、连结O1A,并且延长到点O2,使O1O2=R1+R2.

    2、以O2为圆心,O1O2为半径作,使与在的两侧.

    就是所求作的弧.

    说明:画圆弧与圆弧的连接,主要运用“两圆相切,切点一定在连心线上”这个结论.

    练习题:P148练习,1、2.

    (三)小结

    主要内容:

    1、什么是连接?什么是外连接?什么是内连接?

    2、任何一种连接,其实质就是两线相切,在切点处相连接,是切点两侧的线段和圆弧或圆弧与圆弧相连接.

    3、对于给出的题目,画出连接图形关键在于确定圆心.

    (四)作业

    教材P151习题A组16.

    课外题:画一个生活中的有关连接图形的比例图,下节课展示.

    第12页

    不等式及其解集导学案初中教案精选


    9.1.1不等式及其解集

    [学习目标]

    1.了解不等式概念,理解不等式的解集,能正确表示不等式的解集

    2.培养学生的数感,渗透数形结合的思想.

    [学习重点与难点]

    重点:不等式的解集的表示.

    难点:不等式解集的确定.

    [学习过程]

    一.春耕(问题探知)

    某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式?

    二.夏耘

    1.不等式::学_______________________________________*

    解析:(1)用≠表示不等关系的式子也叫不等式

    (2)不等式中含有未知数,也可以不含有未知数;

    (3)注意不大于和不小于的说法

    例1用不等式表示

    (1)a与1的和是正数;

    (2)y的2倍与1的和大于3;

    (3)x的一半与x的2倍的和是非正数;

    (4)c与4的和的30%不大于-2;

    (5)x除以2的商加上2,至多为5;

    (6)a与b两数的和的平方不可能大于3.

    2.不等式的解::学_______________________________________*

    解析:不等式的解可能不止一个.

    例2下列各数中,哪些是不等是x+1

    -3,-1,0,1,1.5,2.5,3,3.5

    练习:1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3

    2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+50的有哪几个数?

    3.不等式的解集::学_______________________________________*

    含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.

    例3下列说法中正确的是()

    a.x=3是不是不等式2x>1的解

    b.x=3是不是不等式2x>1的唯一解;

    c.x=3不是不等式2x>1的解;

    d.x=3是不等式2x>1的解集

    4.不等式解集的表示方法

    例4在数轴上表示下列不等式的解集

    (1)x>-1;(2)x≥-1;(3)x

    解:

    注意:

    三.秋收

    1.练习:如图,表示的是不等式的解集,其中错误的是()

    2.在数轴上表示下列不等式的解集

    (1)x>3(2)x

    3.教材128:1,2,3

    第3题:要求试着在数轴上表示

    四.冬藏

    1.不等式的解和解集;

    2.不等式解集的表示方法.

    3.错题回顾新课标第一网

    【溶解度曲线的意义及其应用初中教案精选】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...