你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >情系祖国
  • 情系祖国

    发表时间:2022-02-23

    【www.jk251.com - 情系祖国】

    我相信初中教师都接触过教案,教案有利于教学水平的提高,初中老师经常会为写教案感到苦恼,自己的初中教案如何写呢?为了帮助大家,下面是由小编为大家整理的情系祖国,仅供参考,欢迎大家阅读。

    【课题】:【教学目标】:

    知识目标:

    认识国运兴哀牵动着中华儿女的情感、五千年的中华文明是我们丰厚的财富、民族文化造就民族灵魂、民族文化养育着当代少年、珍惜文化传统,保持文化特色。

    能力目标:

    培养全面、辩证地看问题的能力。

    情感态度和价值观目标:

    祖国命运激发着我们的责任感和使命感

    【教学重点】:学习和汲取,培养民族文化素养

    【教学难点】:祖国命运激发着我们的责任感和使命感

    【教学方法】:共同探究、课堂讨论

    【教学课时】:1课时

    【教学课型】:新授课

    【教学过程】

    1播放川剧《变脸》感受民族文化的魅力

    2学生交流中国古代文化成就,(古代哲学、科学技术、医学、文学艺术等)

    3感悟京剧及京剧大师梅兰芳的故事、建筑及建筑学家梁思成的故事,体会民族文化造就民族灵魂

    4小组交流,我们从民族文化身上汲取了什么?

    5小小故事会,学生讲搜集的爱国故事

    6展示材料,50、60年代的雷锋、王进喜的事迹,80、90年代的女排及抗洪抗非典精神,21世纪的神六飞天有关材料,引导学生认识我们的责任感和使命感

    7主题活动,传统文化体验并展示外国语学校的一些剪纸、书法、篆刻等成果

    8播放金湖娃艺术团的节目,感受地方文化魅力

    9我思我悟,体悟民族文化的精粹

    10图片展示引导学生认识民族文化的糟粕

    11小组交流,对待民族文化我们正确的态度

    【后记】:

    紧扣教材特点,努力实现教学目标,力求突破教学重点、难点、调动学生积极性,发挥主动性、创造性、学生能积极参与教学活动,课堂氛围活跃。

    JK251.com延伸阅读

    .立报效祖国之志相关教学方案


    4.1立报效祖国之志

    一、个人的前途与祖国的命运息息相关

    1、为什么说个人的前途与祖国的命运息息相关?

    ①祖国的命运影响个人的前途。只有国家兴旺、经济发展、政治文明,人民群众才能安居乐业、生活富足,社会才能安定祥和、井然有序,个人才能享有自由、充分发展。反之,如果国家衰败、分裂动乱,人民群众就会流离失所,社会就会动荡不安,个人的自由和发展就无从谈起,国人在世界上也会备受欺侮。

    ②国家的兴旺、富强也要靠全体人民的团结奋斗、艰苦创业和无私奉献。

    2、我们为什么要正确认识个人与国家的关系?

    当一个人能正确认识个人与国家的关系时,他就会时刻关心国家的发展和安危。这是一种发自内心的自觉的爱国感情,也是公民应具备的高尚品质。

    二、立报效祖国之志

    1、青少年为什么要立报效祖国之志?

    个人的抱负只有同时代和国家的发展结合起来,用自己的知识和本领为祖国为人民服务,才能使自身价值得到充分实现。如果脱离时代、脱离人民,必将一事无成。当一个人下决心为祖国的独立、尊严、荣誉、富强而贡献自己的一切时,就会产生无私无畏的巨大动力和坚忍不拔的毅力。

    2、在革命年代,周恩来:“为中华之崛起而读书”;在当代,“XX年感动中国十大人物”徐本禹志愿到贵州贫困山区义务支援等事例给我们什么启示?

    启示:我们作为新时代的青少年,从小就要立下爱国之志,以热爱祖国为荣,以危害祖国为耻,选择自己最喜欢的、最能发挥自己的长处的人生道路,为全面建设小康社会,为振兴中华而努力奋斗。

    三、做坚定的爱国者

    1、当代中国青少年精神世界的主流是什么?

    当代中国青少年精神世界主流是热爱祖国、积极向上、团结友爱、文明礼貌。

    2、当代中国青少年应怎样做坚定的爱国者?

    ①当代中国的每一位中学生,立志报国,就要弘扬中华民族精神,维护民族团结,促进祖国统一,以振兴中华为己任。

    ②我们既要反对否定其他民族和国家的特长、排斥一切外来文化的错误倾向;又要反对盲目崇外,妄自菲薄,甚至主张“全盘西化”的错误倾向。

    ③在对外开放过程中,我们要抵制各种腐朽思想文化和生活方式的侵袭,同分裂国家和一切损害国家与民族利益的言行作斗争。

    四、全面而有个性地发展

    1、我们怎么正确认识个性?

    ①我们每个人由于遗传因素、社会环境、家庭条件和生活经历不同,形成了独特的个性。

    ②个人的兴趣、爱好、性格、智能、特长各不相同,各有侧重。不同的优点和长处,将对我们人生的发展起到重要的作用。

    ③只要发挥所长,每个人就能焕发出光彩,从而获得成功。

    ④当今时代是个张扬个性的时代。我们要充分发展和发挥个人的特长,使自己全面而有个性地发展,从而成为一个对祖国、对社会有用的人。

    2、中学生应怎样把立志报效祖国落到行动上?

    中学生立志报效祖国,以振兴中华为己任,落实到行动上,最重要的就是努力学习,在全面发展的同时,扬个人特长,争做有用之才。

    平面直角坐标系初中教案精选


    1、教材分析:

    ⑴知识结构:

    日常生活及其它学科需要一种确定平面内点的位置的方法.在数学上,可以类比数轴,引出的概念.完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来.

    ⑵重点、难点分析:

    本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标.直角坐标系的基本知识是学习全章的基础,在后面学习函数的图象以及一些具体函数的图象时都要应用这些知识.通过对这部分知识的反复而深入的练习、应用,渗透坐标的思想,进而形成数形结合的的数学思想.

    本节的难点是中的点与有序实数对间的一一对应.限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,或不能很好地理解一一对应,有的只限于机械地记忆,这样会影响对数形结合思想的形成.教材上只给出了比较简单的描述.教师可以通过课堂练习,让学生从一点一滴处理解横、纵坐标的值不同,即实数对不同,则在直角平面上的点的位置也不同,反之,亦然.

    2、教学建议:

    数学是世界的一部分,同时又隐藏在世界中.这样,数学教学的目的之一就是使学生通过数学的学习,认识数学与现实世界的联系,数学与人类生活的密切联系,以及数学对人类历史发展的影响与作用.因此,数学概念的产生有其必然性与合理性.

    (1)概念的引入

    组织学生看本章引言中的气温图,说明确定平面内点的位置是实际需要的.可以让学生进行讨论,他们的生活中还有什么类似的例子.如电影院中的座位,到图书馆找书,学生的课程表等.从丰富的背景材料中,体会数学的广泛应用性.

    (2)讲授概念:

    现实生活和其它学科向数学提出了问题,如何建立数学模型以解决这个问题呢?以前,我们学习过数轴.数轴上每一个点都对应一个实数,这个实数叫做这个点在数轴上的坐标,数轴上的点与实数是一一对应的.这样利用数轴可以研究一些数量关系的问题.确定平面内点的位置的方法也可以与此类似,类比出的概念,并结合图形讲述的有关概念.

    (3)练习,深入地理解概念:

    平面直角这节课的概念较多,又都是新的,开始的时候不适合太快,给学生一个适应的过程,一个思维的空间.如:x轴、y轴不在任何象限内,原点是x轴、y轴的交点等.然后,就可以多练习一些简单题,如给出坐标,在中标点,或反之,给出中点的位置,找出其坐标.通过小题的练习,使学生能逐步理解坐标平面内的点和有序实数对之间的一一对应关系.

    总之,形成初步的数学概念后,学生可以通过变式,逐步加深对概念的理解.在解题过程中,教师的任务是创设环境,激励学生凭借自己的原有认知水平,完成对数学知识的建构.在相互讨论评价的过程中,培养学生的责任心.

    这节课可以分两课时完成,第一节课由实际引入,类比数轴定义,给出的概念,并通过练习达到熟练的程度.第二节课,可视第一节课的掌握情况,适当增加一些有探索性的题目.如求一已知点关于x轴、y轴、原点的对称点的坐标;一三象限角平分线上的点的坐标特点等.

    教学目标:

    1、使学生进一步熟悉由坐标确定点和由点求坐标的方法.理解平面内的点与有序实数对之间的一一对应关系.

    2、会用象限和坐标轴说明直角坐标系内点的位置,并会根据点的位置,确定点的横坐标、纵坐标的符号.

    3、掌握确定已知点关于坐标轴(或原点)的对称点的方法.培养学生观察,归纳总结的能力.

    4、培养学生发现问题,主动探索的能力.在与同伴的合作交流中,培养学生的责任心.

    5、渗透数形结合的思想,培养学生思维的严谨性和深刻性.

    教学重点:

    1、掌握象限或坐标轴上的点的坐标的特点.

    2、会求已知点关于坐标轴或原点的对称点的坐标.

    教学难点:理解平面内的点与有序实数对之间的一一对应关系.

    教学用具:直尺、计算机

    教学方法:合作学习,讨论,探究

    教学过程:

    1、提出问题,主动探索

    上节课我们学习了的概念,并介绍了象限与坐标轴.初步体会到平面内的点与有序实数对是一一对应的.今天我们需要开始新的探索,发现数学知识.

    下面看例1

    例1、指出下列各点所在象限或坐标轴;

    你能发现什么规律吗?

    解:描点画图后,可以从图中观察出,A点在第二象限;B点在第三象限;C点在第四象限;D点在第一象限;E点在x轴上;F点在y轴上.

    做完这道题后,你发现能直接从点的坐标判断出点所在象限或坐标轴吗?

    通过学生的分组讨论后,可总结如下:

    象限与坐标轴的定义都是以图形的形式直观给出的.通过本例题,又总结出了相应的代数规律.渗透了数与形的结合.并培养了学生由特殊到一般的抽象思维能力.

    练习:习题13.1的第三题

    例2、在直角坐标系中,标出下列各对点的位置,

    并发现其中的规律.

    (1)(3,5),(2,5)

    (2)(1,2),(1,-3)

    (3)(4,4),(6,6)

    (4)

    通过观察可以总结出:平行于x轴的直线上的点,其纵坐标相同,横坐标为任意实数;平行于y轴的直线上的点,其横坐标相同,纵坐标为任意实数.

    另外一、三象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标相同;二、四象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标互为相反数.

    建议:如果学生在观察时有困难,可以适当增加题量,丰富观察的对象,逐步得出最后的结论.

    这些规律也是有其必然的,如两点的纵坐标相同,则这两点在x轴的同侧,且到x轴的距离相等,由平面几何的知识,可推出这两点的连线平行于x轴.其它的性质也有其存在的道理.通过对规律的总结,渗透数形结合思想,并让学生体会数学知识的形成过程.而点的坐标不同,它在平面上的位置也不相同.即平面上的点与有序实数对是一一对应的.从图中可以看出.

    例3、在直角坐标系中,描出下列各点

    ⑴(2,1),(-2,1)

    ⑵(-3,4),(-3,-4)

    ⑶(5,-4),(-5,-4)

    你能发现上述各对点的位置有何特点吗?它们的坐标有何异同?你能总结出一般的规律吗?并说明其中的道理吗?

    解:(从图中观察出的点的位置)特点两点坐标间关系

    (1)两点关于y轴对称横坐标为相反数,纵坐标相同

    (2)两点关于x轴对称横坐标相同,纵坐标为相反数

    (3)两点关于原点对称横坐标互为相反数,纵坐标互为相反数

    这道题能引发我们得出什么样的结论呢?(答案不固定,本教案只给出参考答案).我们可以这样说:对于直角坐标平面上的任意两点,如果它们的横坐标相反,纵坐标相同,则它们关于y轴对称;如果它们横坐标相同,纵坐标相反,则它们关于x轴对称;如果题目的横、纵坐标都相反,则它们关于原点对称,反之亦然.

    以上的规律可以解决很多问题,比如,已知点(-10,3).求这个点关于x轴、y轴,及原点的对称点的坐标.

    答:(-10,-3);(10,3);(10,-3).

    你想过这其中的道理吗?

    如两点关于y轴对称.根据轴对称的定义,这两点的连线垂直于y轴,且到y轴的距离相等.所以这两点的连线就平行于x轴,它们的纵坐标相同,对称点在y轴的两点.到y轴的距离相等.即这两点的横坐标相反.

    类似地,可以组织学生进行其它两种情况的讨论.这个规律只要求学生能理解,并不要求严格地证明.通过学生的主动探索,复习了对称的概念,体验了数形的结合.亲身经历了数学知识的形成过程.也增强了学生的自信心,激发了他们互动探索的精神.

    小结:本节我们讨论了三道例题,这三道题都是大家共同讨论,通过观察归纳总结探索出的规律,这也是数学知识产生的一种过程.而且每道题的解决都离不开数形结合的思想.而且也能逐步体会出平面内的点与有序实数对之间的一一对应关系.这一部分知识为今后的学习打下了基础,希望大家能真正地理解并能熟练应用.

    作业:习题13.1B组的1-3.

    平面直角坐标系教案模板


    一:教学目标

    1:认识并能画出平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。

    2:经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合意识、合作交流意识。

    二:教学重点

    能画出平面直角坐标系;会根据坐标描出点的位置,由点的位置写出它的坐标。

    三:教学难点

    能能建立平面直角坐标系;求出点的坐标,由点的位置写出它的坐标。

    四:教学时间

    三课时

    五:教学过程

    第一课时

    一)引入新课

    1:要在平面内确定一个地点的位置需要几个数据?

    2:练习如图你能确定各个景点的位置吗?“大成殿”在“中心广场”西、南各多少个格?“碑林”在“中心广场”东、北各多少个格?

    二)新课

    1:我们可以以“中心广场”为原点作两条互相垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,你能表示出“碑林”的位置吗?“大成殿”的位置吗?(学生回答,老师小结)

    2:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。(通常两条数轴成水平位置与铅直位置,取向上或向右为正方向,水平位置的数轴叫横轴,铅直位置的数轴叫纵轴,它们的公共原点叫直角坐标系的原点。)

    3:两条坐标轴把平面分成四部分:右上部分叫第一象限,其它三部分按逆时针方向依次叫第二象限、第三象限、第四象限。

    4:怎样求平面内点的坐标?

    对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫该点的横坐标、纵坐标。

    例1写出多边形ABCDEF各顶点的坐标

    y

    AB

    FOCx

    ED

    5:想一想

    (1)点A与B的纵坐标相同,线段AB的位置有什么特点?

    (2)线段DB的位置有什么特点?

    (3)坐标轴上点的坐标有什么特点?

    6:练习P131做一做

    三:小结(1)怎样画平面直角坐标系?

    (2)怎样求平面内点的坐标?

    (4)知道点的坐标怎样描出点?

    四:作业P132

    第二课时

    一:复习

    1)怎样画平面直角坐标系?

    (学生练习画平面直角坐标系)

    (2)怎样求平面内点的坐标?

    y

    A

    BC

    Ox

    已知等边三角形的边长为2cm,求出各顶点的坐标?

    (3)道点的坐标怎样描出点?

    二:新课

    例在直角坐标系中描出下列各点,并将各组内的点用线段依次连接起来。

    (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5)

    (2)-9,3),(-9,0),(-3,0),(-3,3)

    (3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9)

    (4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7)

    (5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)

    观察所得的图形,你觉得它像什么?

    y

    Ox

    三:练习P134做一做

    四:作业P135习题5.4(1、2)

    第三课时

    一;新课引入与复习

    1)怎样画平面直角坐标系?画平面直角坐标系时应注意些什么?

    2)怎样求平面内点的坐标?(对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫该点的横坐标、纵坐标。)

    二:新课

    例3如图,矩形ABCD的长与宽分别是6,4。建立适当的直角坐标系,并写出各个顶点的坐标。

    y

    BA

    解:如图:以点C为坐标原点,分别以CD、CB所在

    直线为x轴y轴,建立直角坐标系。此时C(0,0)

    O

    CDx

    由CD长为6,CB长为4,可得D,B,A的坐标分别为D(6,0),B(0,4),A(,4)

    思考:(还可以建立直角坐标系吗?与同学交流)

    例4对于边长为4的正三角形ABC,建立适当的直角坐标系,并写出各个顶点的坐标。

    A

    BC

    三:小结建立适当的直角坐标系,求的坐标要注意以下几点?

    1)要找出坐标原点。

    2)要说明横轴与纵轴的位置。

    3)要求出必要的线段的长度。

    四:练习P161(议一议)与随堂练习

    P162习题的第一题

    五:作业P162习题的第二题

    六:课外练习P162(试一试)

    鱼的变化第二课时

    一:复习点的坐标的特征

    1)关于横轴对称的两点横坐标相等,纵坐标相反

    2)关于纵轴对称的两点纵坐标相等,横坐标相反

    3)关于原点对称的两点横坐标相反,纵坐标相反

    二:看图确定点的坐标

    1)左右两幅图关于Y轴对称,已知A(1,3)B(-3,-1),试确定点C,D的坐标?

    AC

    BD

    2)左右两幅图关于Y轴对称,已知A(-3,2)B(-3,1),试确定点C,D的坐标?

    y

    AD

    BC

    x

    三;练习

    1)P142做一做

    2)P143随堂练习

    四:小结P143议一议

    五:作业P144习题(做在书上)

    第五章回顾与思考

    一:学生看书回答问题

    1)在平面内,确定点的位置一般需要几个数据?举例说明。

    2)在直角坐标系中,如何确定给定点的坐标?举例说明。

    3)在直角坐标系中,横、纵坐标系轴上点的坐标各有什么特点?举例说明。

    4)在直角坐标系中,将图形沿坐标轴方向平移,变化前后的对应点的坐标有什么异同?举例说明。

    5)在直角坐标系中,将图形上各点的横坐标或纵坐标加上一个数(或乘-1),变化前后的图形有什么关系?举例说明。

    二:练习

    P145复习题A组

    三:小结点的坐标•一:点P(a,b)到X轴的距离是︱b︱,到Y轴的距离是︱a︱,到原点的距离是√a2+b2•二:对称性1)关于X轴对称的两点横坐标相等,纵坐标互为相反。•2)关于Y轴对称的两点横坐标互为相反,纵坐标相等。•3)关于原点轴对称的两点横坐标互为相反,纵坐标互为相反。•三:平行1)两点的横坐标相等,纵坐标不相等,则这两点所在的直线与Y轴平行,与X轴垂直。2)两点的横坐标不相等,纵坐标相等,则这两点所在的直线与X轴平行,与Y轴垂直。举例•1)点P(-3,4)与X轴对称的点的坐标为。与Y轴对称的点的坐标为。与原点轴对称的点的坐标为。•2)点A(6,-3)到X轴的距离为,•到Y轴的距离为,到原点轴的距离为•3)点A(a,-4)与B(2,b)所在的直线与X轴平行,则a,b.所在的直线与Y轴平行,则a,b.•4)点A(a,b)在第一、三象限的角平分线上,则a、b的关系是。在第二、四象限的角平分线上,则a、b的关系是。练习•1)点P(4,-3)与X轴对称的点的坐标为。与Y轴对称的点的坐标为。与原点轴对称的点的坐标为。•2)点A(-2,-3)到X轴的距离为,•到Y轴的距离为,到原点轴的距离为•3)点A(a-1,-4)与B(2,b+3)所在的直线与X轴平行,则a,b.所在的直线与Y轴平行,则a,b.•4)点A(-a,b)在第一、三象限的角平分线上,则a、b的关系是。在第二、四象限的角平分线上,则a、b的关系是点的平移练习•一:1)点P(-2,3)沿X轴的方向向右平移四个单位长度得到的点的坐标为。•2)点P(-2,3)沿X轴的方向向左平移四个单位长度得到的点的坐标为。•3)点P(-2,3)沿Y轴的方向向上平移四个单位长度得到的点的坐标为。•4)点P(-2,3)沿Y轴的方向向下平移四个单位长度得到的点的坐标为。•5)点P(-2,3)沿X轴的方向先向右平移四个单位长度再沿Y轴的方向向下平移三个单位长度得到的点的坐标为。•6)点P(-2,3)沿X轴的方向先向左平移二个单位长度再沿Y轴的方向向下平移三个单位长度得到的点的坐标为。•5)点P(-2,3)沿Y轴的方向先向上平移四个单位长度再沿X轴的方向向右平移三个单位长度得到的点的坐标为。•6)点P(-2,3)沿Y轴的方向先向下平移二个单位长度再•沿X轴的方向向左平移三个单位长度得到的点的坐标为。•二1)把点P(3,-2)沿X轴方向向平移个单位得到点A(5,-2)•2)把点P(3,-2)沿X轴方向向平移个单位得到点A(0,-2)•3)把点P(3,-2)沿Y轴方向向平移个单位得到点A(3,2)•4)把点P(3,-2)沿Y轴方向向平移个单位得到点A(3,1)点的坐标练习•1)点P(3,-4)沿X轴的方向向右平移四个单位长度得到的点的坐标为。•2)点P(-2,5)沿X轴的方向向左平移四个单位长度得到的点的坐标为。•3)点P(0,-3)沿Y轴的方向向上平移四个单位长度得到的点的坐标为。•4)点P(-1,-3)沿Y轴的方向向下平移四个单位长度得到的点的坐标为。•5)点P(4,-2)沿X轴的方向先向右平移四个单位长度再沿Y轴的方向向下平移三个单位长度得到的点的坐标为。•6)点P(-2,0)沿X轴的方向先向左平移二个单位长度再沿Y轴的方向向下平移三个单位长度得到的点的坐标为。•7)点P(-1,3)沿Y轴的方向先向上平移四个单位长度再沿X轴的方向向右平移三个单位长度得到的点的坐标为。•8)点P(-2,1.5)沿Y轴的方向先向下平移二个单位长度再沿X轴的方向向左平移三个单位长度得到的点的坐标为。•9)把点P(-2,-2)沿X轴方向向平移个单位得到点A(5,-2)•10)把点P(3,2)沿X轴方向向平移个单位得到点A(0,-2)•12)把点P(3,-2)沿Y轴方向向平移个单位得到点A(3,2)•13)把点P(-3,-4)沿Y轴方向向平移个单位得到点A(3,1)•14)点P(4,-2)与X轴对称的点的坐标为。与Y轴对称的点的坐标为。与原点轴对称的点的坐标为。•15)点A(-4,-1)到X轴的距离为,•到Y轴的距离为,到原点轴的距离为•16)点A(a,3)与B(-2,b)所在的直线与X轴平行,则a,b.所在的直线与Y轴平行,则a,b.•17)点A(a,b)在第一、三象限的角平分线上,则a、b的关系是。在第二、四象限的角平分线上,则a、b的关系是。•18)点P(-2,-3)与X轴对称的点的坐标为。与Y轴对称的点的坐标为。与原点轴对称的点的坐标为。•19)点A(5,-2)到X轴的距离为,•到Y轴的距离为,到原点轴的距离为•20)点A(a+1,-4)与B(2,b+3)所在的直线与X轴平行,则a,b.所在的直线与Y轴平行,则a,b.•21)点A(a,-b)在第一、三象限的角平分线上,则a、b的•关系是。在第二、四象限的角平分线上,则a、b的关系是•22)X轴上的坐标为0,Y轴上的坐标为0。•23)点P(a,b)若a=0,则点P在,若b=0则点P在。若ab=o,则点P在。

    数学教案-平面直角坐标系初中教案精选


    1、教材分析:

    ⑴知识结构:

    日常生活及其它学科需要一种确定平面内点的位置的方法.在数学上,可以类比数轴,引出平面直角坐标系的概念.完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来.

    ⑵重点、难点分析:

    本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标.直角坐标系的基本知识是学习全章的基础,在后面学习函数的图象以及一些具体函数的图象时都要应用这些知识.通过对这部分知识的反复而深入的练习、应用,渗透坐标的思想,进而形成数形结合的的数学思想.

    本节的难点是平面直角坐标系中的点与有序实数对间的一一对应.限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,或不能很好地理解一一对应,有的只限于机械地记忆,这样会影响对数形结合思想的形成.教材上只给出了比较简单的描述.教师可以通过课堂练习,让学生从一点一滴处理解横、纵坐标的值不同,即实数对不同,则在直角平面上的点的位置也不同,反之,亦然.

    2、教学建议:

    数学是世界的一部分,同时又隐藏在世界中.这样,数学教学的目的之一就是使学生通过数学的学习,认识数学与现实世界的联系,数学与人类生活的密切联系,以及数学对人类历史发展的影响与作用.因此,数学概念的产生有其必然性与合理性.

    (1)概念的引入

    组织学生看本章引言中的气温图,说明确定平面内点的位置是实际需要的.可以让学生进行讨论,他们的生活中还有什么类似的例子.如电影院中的座位,到图书馆找书,学生的课程表等.从丰富的背景材料中,体会数学的广泛应用性.

    (2)讲授概念:

    现实生活和其它学科向数学提出了问题,如何建立数学模型以解决这个问题呢?以前,我们学习过数轴.数轴上每一个点都对应一个实数,这个实数叫做这个点在数轴上的坐标,数轴上的点与实数是一一对应的.这样利用数轴可以研究一些数量关系的问题.确定平面内点的位置的方法也可以与此类似,类比出平面直角坐标系的概念,并结合图形讲述平面直角坐标系的有关概念.

    (3)练习,深入地理解概念:

    平面直角这节课的概念较多,又都是新的,开始的时候不适合太快,给学生一个适应的过程,一个思维的空间.如:x轴、y轴不在任何象限内,原点是x轴、y轴的交点等.然后,就可以多练习一些简单题,如给出坐标,在平面直角坐标系中标点,或反之,给出平面直角坐标系中点的位置,找出其坐标.通过小题的练习,使学生能逐步理解坐标平面内的点和有序实数对之间的一一对应关系.

    总之,形成初步的数学概念后,学生可以通过变式,逐步加深对概念的理解.在解题过程中,教师的任务是创设环境,激励学生凭借自己的原有认知水平,完成对数学知识的建构.在相互讨论评价的过程中,培养学生的责任心.

    这节课可以分两课时完成,第一节课由实际引入,类比数轴定义,给出平面直角坐标系的概念,并通过练习达到熟练的程度.第二节课,可视第一节课的掌握情况,适当增加一些有探索性的题目.如求一已知点关于x轴、y轴、原点的对称点的坐标;一三象限角平分线上的点的坐标特点等.

    教学目标:

    1、使学生进一步熟悉由坐标确定点和由点求坐标的方法.理解平面内的点与有序实数对之间的一一对应关系.

    2、会用象限和坐标轴说明直角坐标系内点的位置,并会根据点的位置,确定点的横坐标、纵坐标的符号.

    3、掌握确定已知点关于坐标轴(或原点)的对称点的方法.培养学生观察,归纳总结的能力.

    4、培养学生发现问题,主动探索的能力.在与同伴的合作交流中,培养学生的责任心.

    5、渗透数形结合的思想,培养学生思维的严谨性和深刻性.

    教学重点:

    1、掌握象限或坐标轴上的点的坐标的特点.

    2、会求已知点关于坐标轴或原点的对称点的坐标.

    教学难点:理解平面内的点与有序实数对之间的一一对应关系.

    教学用具:直尺、计算机

    教学方法:合作学习,讨论,探究

    教学过程:

    1、提出问题,主动探索

    上节课我们学习了平面直角坐标系的概念,并介绍了象限与坐标轴.初步体会到平面内的点与有序实数对是一一对应的.今天我们需要开始新的探索,发现数学知识.

    下面看例1

    例1、指出下列各点所在象限或坐标轴;

    你能发现什么规律吗?

    解:描点画图后,可以从图中观察出,A点在第二象限;B点在第三象限;C点在第四象限;D点在第一象限;E点在x轴上;F点在y轴上.

    做完这道题后,你发现能直接从点的坐标判断出点所在象限或坐标轴吗?

    通过学生的分组讨论后,可总结如下:

    象限与坐标轴的定义都是以图形的形式直观给出的.通过本例题,又总结出了相应的代数规律.渗透了数与形的结合.并培养了学生由特殊到一般的抽象思维能力.

    练习:习题13.1的第三题

    例2、在直角坐标系中,标出下列各对点的位置,

    并发现其中的规律.

    (1)(3,5),(2,5)

    (2)(1,2),(1,-3)

    (3)(4,4),(6,6)

    (4)

    通过观察可以总结出:平行于x轴的直线上的点,其纵坐标相同,横坐标为任意实数;平行于y轴的直线上的点,其横坐标相同,纵坐标为任意实数.

    另外一、三象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标相同;二、四象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标互为相反数.

    建议:如果学生在观察时有困难,可以适当增加题量,丰富观察的对象,逐步得出最后的结论.

    这些规律也是有其必然的,如两点的纵坐标相同,则这两点在x轴的同侧,且到x轴的距离相等,由平面几何的知识,可推出这两点的连线平行于x轴.其它的性质也有其存在的道理.通过对规律的总结,渗透数形结合思想,并让学生体会数学知识的形成过程.而点的坐标不同,它在平面上的位置也不相同.即平面上的点与有序实数对是一一对应的.从图中可以看出.

    例3、在直角坐标系中,描出下列各点

    ⑴(2,1),(-2,1)

    ⑵(-3,4),(-3,-4)

    ⑶(5,-4),(-5,-4)

    你能发现上述各对点的位置有何特点吗?它们的坐标有何异同?你能总结出一般的规律吗?并说明其中的道理吗?

    解:(从图中观察出的点的位置)特点两点坐标间关系

    (1)两点关于y轴对称横坐标为相反数,纵坐标相同

    (2)两点关于x轴对称横坐标相同,纵坐标为相反数

    (3)两点关于原点对称横坐标互为相反数,纵坐标互为相反数

    这道题能引发我们得出什么样的结论呢?(答案不固定,本教案只给出参考答案).我们可以这样说:对于直角坐标平面上的任意两点,如果它们的横坐标相反,纵坐标相同,则它们关于y轴对称;如果它们横坐标相同,纵坐标相反,则它们关于x轴对称;如果题目的横、纵坐标都相反,则它们关于原点对称,反之亦然.

    以上的规律可以解决很多问题,比如,已知点(-10,3).求这个点关于x轴、y轴,及原点的对称点的坐标.

    答:(-10,-3);(10,3);(10,-3).

    你想过这其中的道理吗?

    如两点关于y轴对称.根据轴对称的定义,这两点的连线垂直于y轴,且到y轴的距离相等.所以这两点的连线就平行于x轴,它们的纵坐标相同,对称点在y轴的两点.到y轴的距离相等.即这两点的横坐标相反.

    类似地,可以组织学生进行其它两种情况的讨论.这个规律只要求学生能理解,并不要求严格地证明.通过学生的主动探索,复习了对称的概念,体验了数形的结合.亲身经历了数学知识的形成过程.也增强了学生的自信心,激发了他们互动探索的精神.

    小结:本节我们讨论了三道例题,这三道题都是大家共同讨论,通过观察归纳总结探索出的规律,这也是数学知识产生的一种过程.而且每道题的解决都离不开数形结合的思想.而且也能逐步体会出平面内的点与有序实数对之间的一一对应关系.这一部分知识为今后的学习打下了基础,希望大家能真正地理解并能熟练应用.

    作业:习题13.1B组的1-3.

    平面直角坐标系知识点期末总复习资料教案模板


    本章需要理解掌握的知识点有:

    1、平面直角坐标系的建立(原点重合且互相垂直的两条数轴)。

    2、由点找坐标(从已知点分别向横轴、纵轴作垂线,垂足对应的数分别是该点的横纵坐标)。

    3、由坐标找点(例p(a,b),先在横轴上找到点的横坐标a,然后过横坐标所在的点作横轴的垂线,则这条垂线上的所有点的横坐标都为a,再在纵轴上找到纵坐标b,然后过纵坐标所在的点作纵轴的垂线,则这条垂线上的所有点的纵坐标都为b,两条直线的交点则为要找的点p)。

    4、坐标平面内的点和有序实数对是一一对应关系。

    5、坐标平面被坐标系分成四个部分,分别称为第一象限、第二象限、第三象限和第四象限。每个象限符号特点要清楚,

    坐标轴上的点不属于任一象限。

    6、横轴上的点纵坐标为0,纵轴上的点横坐标为0.

    7、点到横轴的距离是纵坐标的绝对值;

    点到纵轴的距离是横坐标的绝对值。

    8、点a(a,b),b(m,n),若ab与x轴平行,则b等于n,且a不等于m;

    若ab与y轴平行,则a等于m,且b不等于n

    9、点a(a,b),b(m,n)关于x轴对称,则a等于m,且b与n互为相反数

    点a(a,b),b(m,n)关于y轴对称,则b等于n,且a与m互为相反数。

    点a(a,b),b(m,n)关于原点对称,则a与m互为相反数,且b与n互为相反数。

    10、数轴上两点间的距离等于它们坐标差的绝对值;

    平面内两点间的距离等于它们横、纵坐标分别作差的平方的和的算术平方根。

    11、点a(a,b),b(m,n),则线段ab中点的坐标分别是a、b两点横、纵坐标的平均数。

    12、横、纵坐标相等的点在一、三象限夹角平分线上,反之亦然。

    横、纵坐标互为相反数的点在二、四象限夹角平分线上,反之亦然。

    13、在坐标系中求三角形面积:如三角形有一边在坐标轴上或与坐标轴平行,则以此边为底来求三角形面积;

    如没有边在坐标轴上或与坐标轴平行,则分别过三个顶点作坐标轴的平行线,得到一个矩形。用矩形的面积减去周边直角三角形的面积即可得到要求三角形面积。

    如求四边形的面积,一般都是采用分割的方法,也可考虑补的方法。

    14、图形的平移有两个要素:平移方向和平移距离

    图形在坐标系中的平移,可采用坐标的变化来描述。

    图形左、右平移,横坐标减、加;

    图形上、下平移,纵坐标加、减。

    【情系祖国】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...