你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >经典初中教案§完全平方公式
  • 经典初中教案§完全平方公式

    发表时间:2022-02-17

    【www.jk251.com - 完全平方公式】

    随着初中教师工作的不断熟练,我们需要撰写教案,一篇好的教案需要我们精心构思,每一位初中老师都要慎重考虑教案的设计,优秀的初中教案是什么样子的?欢迎大家阅读小编为大家收集整理的《经典初中教案§完全平方公式》。

    教学目标在具体情景中进一步理解完全平方公式,能正确运用完全平方公式和平方差公式进行计算.重点、难点根据公式的特征及问题的特征选择适当的公式计算.教学过程一、议一议1.边长为(a+b)的正方形面积是多少?2.边长分别为a、b拍的两个正方形面积和是多少?3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答(1)(a+b)(2)a+b(3)因为(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面积比(2)中的正方形面积大.二、做一做例1.利用完全平方式计算1.102,2.197师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的平方,且计算尽可能简便.学生活动:在练习本上演示此题.让学生叙述,教师板书.解:1.102=(100+2)2.197=(200-3)=100+2lOO2+2,=200-22O03十3,=10000+400+4=40000-1200+9=10404=38809例2.计算:1.(x-3)-x2.(2a+b-)(2a-b+)师生共同分析:1中(x-3)可利用完全平方公式.学生动笔解答第1题.教师根据学生解答情况,板书如下:解:1.(x-3)-x=x+6x+9-x=6x+9师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神.学生活动:分小组讨论第(2)题的解法.此题学生解答,难度较大.教师要引导学生使用加法结合律,为使用公式创造条件.学生小组交流派代表进行全班交流.最后教师板书解题过程.解:2.(2a+b-)(2a-b+)=[2a+(b-)][2a-(b-)]=(2a)-(b-)=4a-(b-3b+)=4a-b+3b-三、试一试计算:1.(a+b+c)2.(a+b)师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c)=[a+(b+c)]对于(2)可化为(a+b)=(a+b)(a+b).学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述,教师板书.解:1.(a+b+c)=[a+(b+c)]=(a+b)+2(a+b)c+c=a+2ab+b+2ac+2bc+c=a+b+c+2ab+2ac+2bc四、随堂练习P381五、小结本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点.1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(a±b)=a±b的错误,或(a±b)=a±ab+b(漏掉2倍)等错误.2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.六、作业课本习题1.14P381、2、3.七、教后反思§1.9整式的除法第一课时单项式除以单项式教学目标1.经历探索单项式除法的法则过程,了解单项式除法的意义.2.理解单项式除法法则,会进行单项式除以单项式运算.重点、难点重点:单项式除以单项式的运算.难点:单项式除以单项式法则的理解.教学过程一、议一议,探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由1.xy÷x,(8mn)÷(2mn),(abc)÷(3ab).师生共同分析:此题是做除法运算,可以从两方面思考:根据除法是乘法的逆运算,将除法问题转化为乘法问题去解决,即()·x=xy,由单项式乘以单项式法则可得(xy)·x=xy,因此,xy÷x=xy.另外,根据同底数幂的除法法则,由约分也可得=xy.学生动笔:写出(2)(3)题的结果.教师板书:xy÷x=xy,(8mn)÷(2mn)=4n,(abc)÷(3ab)=abc师:以上运算是单项式除以单项式的运算,你能说说如何进行单项式除以单项式的运算?学生活动:小组讨论,教师引导学生从系数、同底数幂、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,其余同学补充纠正.出示单项式除法法则(投影显示)单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.二、做一做,巩固新知例1计算1.(-xy)÷(3xy)2.(10abc)÷(5abc)3.(2xy)(-7xy)÷(14xy)4.(2a+b)÷(2a+b)学生活动:在练习本上计算.教师引导学生按法则进行运算,首先确定它们的系数,把系数的商作为商的系数,其次确定相同的字母,在被除式中出现的字母作为商中可能含有的字母,相同字母的指数之差作为商式中对应字母的指数,只在被除式中含有的字母指数不变,最后化简.第(1)(2)题对照法则进行,第(3)题要按运算顺序进行.第(4)题先把(2a+b)看作一个整体(一个字母)相除,后用完全平方公式计算.教师板书如下:解:1.(-xy)÷(3xy)2.(10abc)÷(5abc)=(-÷3)xy=(10÷5)abc=-y=2abc3.(2xy)(-7xy)÷(14xy)4.(2a+b)÷(2a+b)=8xy(-7xy)÷(14xy)=(2a+b)=-56xy÷(14xy)=(2a+b)=-4xy=4a+4ab+b三、随堂练习P401学生活动:让四名同学到黑板板演,其余同学在练习本上计算,同伴可交流,互相订正.教师巡回检查,对存在问题及时更正.待四名板演同学完成后,师生共同订正.四、小结本节课主要学习了单项式除以单项式的运算.在运用法则计算时应注意以下几点:1.系数相除与同底数幂相除的区别;2.符号问题;3.指数相同的同底数幂相除商为1而不是0;4.在混合运算中,要注意运算的顺序.五、作业课本习题1.15.P411、2.3六、教后反思

    Jk251.com相关文章推荐

    经典初中教案平方差公式


    4.4.1课时教案

    湖北口中学张衍生

    教学内容:P108—110例1例2例3

    教学目的:1、使学生会推导,并掌握公式特征。

    2、使学生能正确而熟练地运用进行计算。

    教学重点:使学生会推导,掌握公式特征,并能正确而熟

    练地运用进行计算。

    教学难点:掌握的特征,并能正确而熟练地运用它进行计

    算。

    教学过程:

    一、复习引入

    1、复述多项式与多项式的乘法法则

    2、计算(演板)

    (1)(a+b)(a-b)(2)(m+n)(m-n)

    (3)(x+y)(x-y)(4)(2a+3b)(2a-3b)

    3、引入新课,由2题的计算引导学生观察题目特征,结果特征(引入新课,板书课题)

    二、新课

    1、

    由上面的运算,再让学生探究

    现在你能很快算出多项式(2m+3n)与多项式(2m-3n)的乘积吗?引导学生把2m看成a,3n看成b写出结果.

    (2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2

    (a+b)(a-b)=a2-b2

    向学生说明:我们把

    (a+b)(a-b)=a2-b2(重点强调公式特征)

    叫做,也就是:

    两个数的和与这两个数的差等于这两个数的平方差.

    3、练习:判断下列式子哪些能用平方差公计算。(小黑板)

    (1)(-x-2y)(-x+2y)(2)(-2a+3b)(2a-3b)

    (3)(a+3b)(3a-b)(4)(-m-3n)(m-3n)

    2、教学例1

    (1)(2x+1)(2x-1);(2)(x+2y)(x-2y)

    (2)分析:让学生先说一说这两个式子是否符合特征,再说一说哪个相当于公式中的a,哪个相当于公式中的b,然后套公式。

    (3)具体解题过程:板书,同教材,略

    3、教学例2例3

    先引导学生分析后指名学生演板,略

    4、练习:课本P1101(指名演板)2、(口答)3、演板

    三、巩固练习:(小黑板)

    1、填空:(1)(x+3)(x-3)=__________(2)(-1-2x)(2x-1)=______

    (3)(-1-2x)(-2x+1)=_____________(4)(m+n)()=n2-m2

    (5)()(-x-1)=1-x2(6)()(a-1)=1-a2

    2、选择题

    (1)下列可以用计算的是()

    A、(2a-3b)(-2a+3b)B、(-4b-3a)(-3a+4b)

    C、(a-b)(b-a)D、(2x-y)(2y+x)

    (2)下列式子中,计算结果是4x2-9y2的是()

    A、(2x-3y)2B、(2x+3y)(2x-3y)

    C、(-2x+3y)2D、(3y+2x)(3y-2x)

    (3)计算(b+2a)(2a-b)的结果是()

    A、4a2-b2B、b2-4a2C、2a2-b2D、b2-2a2

    四、小结:引导学生说一说

    五、作业:P1141

    思考题:运用计算:

    (1)(a+b)2—(a-b)2(2)(x+y+1)(x+y-1)

    (3)(a-b+1)(a+b-1)

    课后简记:

    附:板书设计

    例1例2例3

    (a+b)(a-b)=a2-b2

    数学教案-完全平方公式


    课题:完全平方公式

    一、教材分析:

    (一)教材的地位与作用

    本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:

    (1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。

    (2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。

    (3)公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好模式。

    (二)教学目标的确定

    在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标如下:

    1、知识目标:

    理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。

    2、能力目标:

    渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。

    3、情感目标:

    培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。

    (三)教学重点与难点

    完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:

    本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

    本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。

    二、教学方法与手段

    (一)教学方法:

    针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

    采用小组讨论,大组竞赛等多种形式激发学习兴趣。

    (二)教学手段:

    利用投影仪辅助教学,突破教学难点,公式的推导变成生动、形象、直观,提高教学效率。

    (三)学法指导:

    在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

    三、教材处理

    根据本节内容特点,本着循序渐进的原则,我将以“边长为(a+b)的正方形面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的方法进行,再通过分层次练习,加以巩固。

    四、教学程序

    教学过程

    设计意图

    一、

    【经典初中教案§完全平方公式】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...