【www.jk251.com - 有理数的加法】
当我们提起初中教学,你印象最深刻的一定是教案吧。教案是保证教学质量的基本条件,高质量的教案对初中生的成长有促进作用,写初中教案要注意哪些方面呢?《有理数的加法相关教学方案》是小编为大家精心挑选的范文,希望你喜欢。
教学案例一、设计思路借助生活中熟悉的例子“数轴”比赛中的加减分,使学生着先理解(+1)+(-1)=0和(-1)+(+1)=0,然后利用正负抵消的思路,讨论整理加法的几种情形,并借助数轴加深理解后由特例归纳出法则。二、教学目标1.经历探索有理数加法法则和运算法则和运算律的过程理解法则和运算律。2.能熟练进行整理加法运算,并能用运算律简化运算。三、教学重点和难点重点:能熟练的进行整数加法运算法则。难点:理解法则和运算律。四、教学过程1、创设情境,引入课题(1)举出比赛中加减计分的例子板书:有理数加法(2)师生互动,探索规律出示题目:31+76+69问题:小学的加法交换律的内容,能否利用它来解答有理数加法的题目呢?出示例2:31+(-28)+28+29请两位同学上黑板,一位同学用加法法则计算,一位同学用加法交换律计算,其余学生自己动手解答,互相交流。2、总结规律,得出结论运用加法结合律可以使有理数运算简化,由此得出,小学的加法结合律、交换律对于有理数同样是适用的。3、示例3、学生板演,强调使用交换律、结合律4、课堂练习:①(-25)+(-7)+25②2+[(-3)+(-8)]③43+(-77)+27+(-43)由学生完成,教师指导5、课堂小结①这节课你学会了一种什么运算?②你有何体会?6、作业:五、教学反思:这节课我为学生创造了思考、交流的机会,使学生合作交流。但计算中个别学生仍有漏符号的问题。
Jk251.com相关文章推荐
有理数的加法与减法
有理数的加法与减法(一)一、教学指导思想本节内容是苏教版课程标准本数学教科书《数学》七年级上册第二章的内容,依据新课标的理念,主要从以下几点出发进行教学设计。1、培养学生将实际问题数学化的意识,用数学方法研究实际问题的意识。2、体验数学知识产生的过程,培养科学探究数学问题的方法。3、倡导自主学习、合作学习、活动学习。以小组为单位,开展探究、讨论,使学生的探索能力得到发展。4、立足教材,发展课程,让学生感受到数学原理的合理性,培养学生自主探索数学的兴趣。二、教材分析有理数的加法与减法一共四课时,第一课时内容是有理数的加法,新课标要求数学教学应结合具体情境和生活经验中的数学信息,发现并提出问题,积极参与对数学问题的讨论,积极寻找解决数学问题的方法。体验在解决问题时如何与他人合作、交流。在这一节课中要求学生自主推导出有理数加法法则,熟练地掌握有理数的加法运算,为以后整式运算打下基础,有理数的加法可分为三种情况,一是同号相加,二是异号相加,三是与0相加,比较困难的是异号相加时的符号与绝对值的处理。同时让学生体会有理数加法的合理性。在教学过程中要渗透“分类”的数学思想,在前面3节学过了负数,绝对值与相反数,为本节的学习作好了铺垫,在教学过程中不宜在数字运算方面设置障碍,关键是让学生熟练地掌握运算法则,随着知识的积累、技能的提高、数感的增加,再逐渐提高要求。还应注意发展学生的能力,培养其情感。教学重点:引导学生自主推导出有理数的加法法则,能够熟练地进行有理数的加法计算。教学难点:让学生对有理数加法法则的认同。本节关键:是对和的符号、绝对值与加数的符号、绝对值之间关系的理解,学生自主推导可能有困难,教学中设计了足球比赛的净胜球的计算和学生在数轴上走动的实验,通过两次计算结果的比较归纳出其间的关系。课时安排:一课时。三、学情分析学生在小学已学习过正数与0(非负数)的加法,前面2小节学习使学生对负数,绝对值与相反数有了一定的认识,但是这种认识还不是很深刻的,可能对负数心存畏惧。在这种情况下展开有理数的加法,学生对负数相加的理解可能有一定的难度,而且这种情形在实际生活中遇见的比较少,这就增加了教学的难度。在教学过程中用了两个具体的情境,来降低难度,特别是其中的数学实验,让学生亲身体会数学知识的产生。教学准备:1、制作相关的cai课件。2、在教室门前(操场上)用熟石灰画六条数轴。3、多准备几副扑克牌。4、为学生准备学案(其中包括三个表格)。四、教学目标(一)知识目标:1、能用自己的话表述有理数的加法法则。2、能利用法则熟练的进行有理数的加法运算。3、学生自主总结有理数加法的二个步骤。(一是确定符号、二是求绝对值)。(二)能力目标:1、通过数学实验,数学游戏等活动培养学生探索数学知识的能力。2、通过具体情境的教学,培养学生运用数学知识解决实际问题的能力。(三)情感态度与价值观目标1、引导学生体会“分类”的数学思想在解决实际数学问题中的应用。2、培养学生自主探究数学知识的兴趣,培养学生运用数学解决实际问题的意识。3、通过合作、交流等学习,培养学生关注社会、关心他人的良好品德。注:教学过程附后五、教学过程程序教师活动学生活动设计意图情境创设(1)用cai展示2005年世青赛,观看中国队在赛场上的比赛,摘录其中精彩的射门片段。学生观看录像内容激发学生的学习欲望(2)在足球比赛中,要衡量一个球队的竞技水平可以计算比赛的净胜球数,只要把两场比赛结果加起来即可,下表中是世青赛中中国队的几场不俗战绩:(表一)赢球数净胜球数算式主场客场-3-2-3232-3-2300-3友情提示:赢球记为“+”,输球记为“-”(3)问:根据自己的实际生活经验,能否算出的每次的净胜球,算式该如何写出?学生分组讨论,教师参与某一组讨论,并填写左表(一),投影所填的结果,师生共同订正让学生根据自己的实际生活经验解决问题,降低学生学习的难度,更好进入探究阶段。请同学们思考一下,和的符号,绝对值与加数的符号,绝对值间有何关系。友情提示:有理数由两部份组成,一部份是符号,二部份是绝对值,学生进行分组讨论,看哪组讨论热烈,教师参与另一组讨论,各组先保留各自见解。培养学生自生探究合作交流的能力。情境体验数学实验:将学生按自然组分成六组,交待需要注意的问题。(表二)组别第一次第二次结果算式第一组4-2第二组-42第三组42第四组-4-2第五组40第六组-40学生走出教室,来到事先画好数轴的地方。一学生站在原点,另一学生按左表中的数字所表示的意义走动,其余学生记录走动的哪位学生在数轴上的位置,填写左表中的空白位置。学生做完实验后回到教室。让学生亲身经历,明确任务,协作完成,使学生感到数学知识也是具体的,可感的。培养学生用数学知识,解决实际问题的能力。规定其中一个方向为正(视具体情况而定),教师参与其中一组活动。探索求知(1)问:以上两表中有无相同类型的,找出相同类型的算式?友情提示:从加数的符号上寻找相同类型的算式。(2)把相同类型的式子写在一起。正数+正数:_______,_______负数+负数:_______,_______正数+负数:_______,_______负数+正数:_______,_______正数+0:_______,_______0+负数:_______,_______并用不同颜色的笔标出符号和绝对值。(3)问:和的符号,绝对值与加数的符号,绝对问有何关系。教师参与一组讨论并巡回进行适当的点拨,师生共同总结法则并填写下表:(表三)类型符号绝对值同号异号与0相加学生举手回答学生分组讨论、交流。各组推荐一名代表发言,说出自己的见解,填好左表(三),并用投影仪投影,找出最好的一份。挖掘学生已有知识,培养学生分析问题,解决问题的能力,善于表述自己的观点,培养学生探究数学知识的兴趣。学以致用(1)例题讲解例:计算①(-180)+(+20)②(-15)+(-3)③5+(-5)④0+(-2)解:(略)教师板书问:有理数的加法可分为几步进行?一是确定符号,二是求绝对值。(2)牛刀小试:计算:①(-13)+25②(-52)+(-7)③(-23)+0④5.2+(-5.2)教师对其中易出错进行重点强调(3)在玩中学:同位同学发半副扑克牌,并制定游戏规则红色数字为负:扑克牌的黑色数字为正,且j为11,q为12,k为13,a为1,j0ker为0奖惩:说不出两数的和或者反应比较慢的学生,下午利用课外活动时间去清除教室门前(操场上)所画的数轴。学生口述解题过程学生口答四生板演最后由学生指出解题中的错误洗好牌,同位每人任抽一张,合在一起,由其中一位学生口答两数之和,然后再轮流回答培养学生一定的解题规范培养学生的表述能力,把感性知识上升为理性知识在游戏活动中能不知不觉的掌握知识同时减少学生听课疲劳同时对学生进行热爱环境的教育点拨升华(1)通过本节课的学习你有何收获?(2)发散思维:小学学习的加法,其和一定大于每一个加数,但引进负数以后是否还有这样的结论?如果没有可得到何结论?友情提醒:若不好研究能否考虑分成几种类型去研究。(3)在我们实际生活中会不会遇见用有理数加法可以解决的实际问题呢?自我评价本节学习的收获与不足学习延伸加深学生对有理数加法认识,同时让学生体会“分类”的数学方法在解决实际问题时应用作业:在课本上习题中自己选择4~6题作为作业.
上一篇:有理数的加法与减法(1)
下一篇:案例:有理数的加法
数学教案-有理数的乘法的教学方案
教学目标
1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
教学设计示例
有理数的乘法(第一课时)
教学目标
1.使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过有理数的乘法运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法法则的理解.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米)①
答:上升了6厘米.
问题2水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米)②
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.
继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.
因此,在进行有理数乘法时,需要时时强调:先定符号后定值.
三、运用举例,变式练习
例1计算:
例2某一物体温度每小时上升a度,现在温度是0度.
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a=-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教师引导学生检验一下(2)中各结果是否合乎实际.
课堂练习
1.口答:
(1)6×(-9);(2)(-6)×(-9);(3)(-6)×9;(4)(-6)×1;
(5)(-6)×(-1);(6)6×(-1);(7)(-6)×0;(8)0×(-6);
2.口答:
(1)1×(-5);(2)(-1)×(-5);(3)+(-5);
(4)-(-5);(5)1×a;(6)(-1)×a.
这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.
3.当a,b是下列各数值时,填写空格中计算的积与和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
5.判断下列方程的解是正数还是负数或0:
(1)4x=-16;(2)-3x=18;(3)-9x=-36;(4)-5x=0.
四、小结
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.
五、作业
1.计算:
(1)(-16)×15;(2)(-9)×(-14);(3)(-36)×(-1);
(4)100×(-0.001);(5)-4.8×(-1.25);(6)-4.5×(-0.32).
2.计算:
3.填空(用“>”或“<”号连接):
(1)如果a<0,b<0,那么ab________0;
(2)如果a<0,b<0,那么ab_______0;
(3)如果a>0时,那么a____________2a;
(4)如果a<0时,那么a__________2a.
探究活动
问题:桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?
答案:“±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.
道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.
有理数的加法减法导学案_教案模板
【教学目标】
1、通过数学活动使学生共同探索有理数加法、减法法则,从而理解并掌握有理数的加法、减法的法则以及有理数的加减混合运算;
2、能熟练进行有理数的加减混合运算。
【教学重点】在有理数的范围内加法交换律、结合律的应用与简化计算。
【教学难点】应用有理数的加法、减法及运算律解决实际问题。
【教学过程】
『问题情境』
先看一个例子:
(-8)-(-10)+(-6)-(+4)
这是一道有理数的加减混合运算题,你会做吗?请同学们思考练习。
『自主探究』
全班交流:老师适时引导、指导、边讨论边总结如下:
(1)上题可以按照运算顺序,从左到右逐一加以计算;
(2)上题通常也可以用有理数减法法则,把它改写:
(-8)+(+10)+(-6)+(-4)
统一为只有加法运算的和式.把加减法统一写成加法的式子,有时也叫做代数和。
(3)在一个和式里,通常把各个加数的括号和它前面的加号,省略不写.如上式可写成省略加号的和的形式:-8+10-6-4
(象这样的式子仍看作和式,读作“负8、正10、负6、负4的和”,按运算意义也可读作“负8加10减6减4”,在这里把除第一个数外的数字前面的符号都可看作为运算符号,又可看作性质符号,这样,性质符号与运算符号既有区别,又有联系,有时可以互相转化。)
『例题讲评』
例1、计算:
(1)2+5-8;(2)14-(-12)+(-25)-17
(3)-3-5+4;(4)-26+43-24+13-46
例2、巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了7km,休息之后,继续向东维护了3km;然后折返向西巡视了11.5km,此时他在住地的什么方向?与驻地的距离是多少?
2.4有理数的加法和减法(4)----随堂练习
评价_______________
1.把下列各式写成省略加号的和的形式,并说出它们的两种读法。
(1)(-12)-(+8)+(-6)-(-5);
(2)(+3.7)-(-2.1)-1.8+(-2.6)
2.把6-(-9)+(-15)-(-3)写成省略加号的和的形式,并计算。
3.计算:
(1)7-(-4)+(-5)(2)-5-(+3)+(-9)-(-7)+
(3)(-10)-(+12)-(-36)+(-23)(4)
(5)(+16)+(-8)-|-3|+|+8|-|-12|-(+5)(6)-21-12+33+12-67
(7)5.4-2.3+1.5-4.2(8)
有理数的加减混合运算
有理数的加减混合运算
【【同步达纲练习】
1.选择题:
(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是()
a.-2-3-5-4+3b.-2+3+5-4+3
c.-2-3+5-4+3d.-2-3-5+4+3
(2)计算(-5)-(+3)+(-9)-(-7)+所得结果正确的是()
a.-10b.-9c.8d.-23
(3)-7,-12,+2的代数和比它们的绝对值的和小()
a.-38b.-4c.4d.38
(4)若+(b+3)2=0,则b-a-的值是()
a.-4b.-2c.-1d.1
(5)下列说法正确的是()
a.两个负数相减,等于绝对值相减
b.两个负数的差一定大于零
c.正数减去负数,实际是两个正数的代数和
d.负数减去正数,等于负数加上正数的绝对值
(6)算式-3-5不能读作()
a.-3与5的差b.-3与-5的和
c.-3与-5的差d.-3减去5
2.填空题:(4′×4=16′)
(1)-4+7-9=--+;
(2)6-11+4+2=-+-+;
(3)(-5)+(+8)-(+2)-(-3)=+-+;
(4)5-(-3)-(+7)-2=5+--+-.
3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′)
(1)(-21)+(+16)-(-13)-(+7)+(-6);
(2)-2-(-)+(-0.5)+(+2)-(+)-2.
4.计算题(6′×4=24′)
(1)-1+2-3+4-5+6-7;
(2)-50-28+(-24)-(-22);
(3)-19.8-(-20.3)-(+20.2)-10.8;
(4)0.25-+(-1)-(+3).
5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′)
(1)x+y-z;(2)-x-y+z;(3)-x+y+z;(4)x-y-z.
【素质优化训练】
(1)(-7)-(+5)+(+3)-(-9)=-7539;
(2)-(+2)-(-1)-(+3)+(-)
=(2)+(1)+(3)+();
(3)-145(-3)=-12;
(4)-12(-7)(-5)(-6)=-16;
(5)b-a-(+c)+(-d)=abcd;
2.当x=,y=-,z=-时,分别求出下列代数式的值;
(1)x-(-y)+(-z);(2)x+(-y)-(+z);
(3)-(-x)-y+z;(4)-x-(-y)+z.
3.就下列给的三组数,验证等式:
a-(b-c+d)=a-b+c-d是否成立.
(1)a=-2,b=-1,c=3,d=5;
(2)a=23,b=-8,c=-1,d=1.
4.计算题
(1)-1-23.33-(+76.76);
(2)1-2*2*2*2;
(3)(-6-24.3)-(-12+9.1)+(0-2.1);
(4)-1+8-7
【生活实际运用】
某水利勘察队,第一天向上游走5千米,第二天又向上游走5,第三天向下游走4千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米?
参考答案:
【同步达纲练习】
1.(1)c;(2)b;(3)d;(4)a;(5)c;(6)c2.(1)4,(-7),(-9)(2)(-6),(-11),(-4),2;(3)-5,8,2,3;(4)3,7,2;
3.略4.(1)-4;(2)-80;(3)-30.5(4)-5
5.(1)-4;(2)4;(3)0.4;(4)-0.4.
【素质优化训练】
1.(1)-,+,+;(2)-,+,-,-;(3)+,+;(4)-,+,+;(5)-,+,-,-.
2.(1)(2)(3)(4)-
3.(1)(2)都成立.
4.(1)-
(2)
(3)-29.5
(4)-1第(4)题注意同号的数、互为相反数先分别结合。
【生活实际运用】
1.上游1千米
上一篇:有理数的混合运算(1)
下一篇:有理数的混合运算
有理数的乘法
1.4.1有理数的乘法(2)【教学目标】1.巩固有理数乘法法则;2.探索多个有理数相乘时,积的符号的确定方法.【对话探索设计】〖探索1〗1.下列各式的积为什么是负的?(1)-2×3×4×5×6;(2)2×(-3)×4×(-5)×6×7×8×9×(-10).2.下列各式的积为什么是正的?(1)(-2)×(-3)×4×5×6×7;(2)-2×3×4×5×(-6)×7×8×(-9)×(-10).〖观察1〗p38.观察〖思考归纳〗几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?(见p38.思考)与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值〖例题学习〗p39.例3〖观察2〗p39.观察〖练习〗p39.练习〖作业〗p46.7.(1),(2)(3),8,9,10,11.〖补充练习〗1.(1)若a=3,a与2a哪个大?若a=0呢?又若a=-3呢?(2)a与2a哪个大?(3)判断:9a一定大于2a;(4)判断:9a一定不小于2a.(5)判断:9a有可能小于2a.2."几个数相乘,积的符号由负因数的个数决定"这句话错在哪里?3.若a>b,则ac>bc吗?为什么?请举例说明.4.若mn=0,那么一定有()(a)m=n=0.(b)m=0,n≠0.(c)m≠0,n=0.(d)m、n中至少有一个为0.5.利用乘法法则完成下表,你能发现什么规律?
×
3
2
1
0
-1
-2
-3
3
9
6
3
0
-3
2
6
2
2
1
3
2
1
0
-1
-2
-3
6.(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为-a,你认为哪家商店该彩电的降价的百分率大?为什么?(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1.2a,你认为哪家商店该彩电的降价的百分率大?为什么?
1.4.1有理数的乘法
1.4.1有理数的乘法(3)
【教学目标】1.熟练有理数乘法法则;2.探索运用乘法运算律简化运算.【对话探索设计】〖探索1〗你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?〖阅读理解〗乘法交换律和结合律(见p40)〖探索2〗下列计算若按顺序依次相乘怎样算?用运算律为什么能简化运算?(1)25×4;(2)-×1999×.〖探索3〗运用运算律真的能节省时间吗?分两个大组,比一比:计算×(-198)×().〖练习1〗运用乘法交换律和结合律简化运算:(1)1999×125×8;(2)-1097().〖探索4〗1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?2.如右图,你会用两种方法求长方形abcd的面积吗?〖例题学习〗p41.例5〖作业〗p41.练习〖补充作业〗1.计算(注意运用分配律简化运算):(1)-6×(100-);(2)×(-12).(2)2×(-3)×4×(-5)×(-6)×7×8×9×(-10);(3)2×(-3)×4×(-5)×(-6)×0×7×8×9×(-10);4.下列各式的积(幂)是正的还是负的?为什么?(1)(-3)×(-3)×(-3)×(-3)×(-3).5.运用乘法交换律和结合律简化运算:(1)-98(-0.6);(2)-1999(-)()【补充练习】1.某地气象统计资料表明,高度每增加,气温就降低大约.现在地面气温是,则在的高空的气温是多少?2.运用分配律化简下列的式子:(1)例3x+9x+x(2)13x-20x+5x;=(3+9+1)x=13x;(3)12π-18π-9π;(4)-z-7z-8z.
有理数的混合运算
有理数的混合运算(拓展课)
——24点游戏
上课学校:高桥-东陆学校执教者:丁迎华班级:预备2班
地点:预备2班时间:3月16日
一、背景分析:
1.学情分析:考虑到预备班的学生年龄偏小,而且由于数学学科的特点,比较枯燥,特在教学中安排了一节24点游戏内容,以提高学生的学习兴趣,发挥学生的积极性和参与性。
2.教材分析:本节课是在学完有理数这一章之后的研究性阅读材料,可以通过本节课的学习旨在提高学生四则运算的速度和心算的能力。
教学目标:
1.熟练掌握运算律、提高四则运算的速度和心算的能力;
2.培养学习数学的兴趣;
3.通过合作解决新的问题。
二、教学重点、难点:
1.运算速度和心算能力;
2.培养合作精神;
3.体会游戏规则的变化其实是由数的范围发生了变化。
三、教学设计:
二期课改的理念是“以学生发展为本”,充分发挥学生的主观能动性,积极参与课堂活动,在教学过程中,教师要充分发挥情感因素在教学中的作用,与学生建立平等合作的关系,确立学生在学习中的主体地位。特别是在数学教学中,由于数学学科的逻辑性和思维性很强,学习数学对于学生来说感到非常的枯燥、乏味,学生只是为了学而学,没有主动学习的兴趣,所以在新教材的编排里,编入了24点游戏一节阅读材料,因此我在上完有理数以后,利用24点游戏,通过与数的计算有关的游戏,学会从生活和游戏中体验数学,感悟数学,感受数学美,培养喜欢数学的情感,从而激发学生的学习兴趣和团队合作、参与竞争等能力。
四、教学过程:
1.拿出教具,扑克牌,引出课题。
2.说出24点游戏规则。
3.电脑随机选择8组数据,在这期间可以考察学生对运算律和运算顺序的熟练程度。
4.教师给出1,5,5,5四个数,给出新的法则,引进分数。
5.教师继续给出新的法则,引进负数。
6.学生小结。
7.课后思考。
上一篇:有理数的混合运算、近似数练习
下一篇:有理数的混合运算
初中数学有理数
1.2有理数
【教学目标】
1.掌握有理数的概念;
2.会对有理数按一定的标准进行分类;
3.体检分类.
【对话探索设计】
〖复习〗
我们知道,所有的分数都可以写成两个整数的比.有限小数5.32可以写成两个整数的比吗?所有的有限小数都是分数吗?可以写成两个整数的比吗?是不是分数?
结论:所有的有限小数和无限循环小数都是分数.
〖探索1〗
小学时所指的整数包括正整数和零,学了负整数以后,今后我们所指的整数与小学时所指的整数有什么不同?
结论:正整数﹑零﹑负整数统称整数.
〖探索2〗
下列负数哪些是负分数?
-12,,-0.33,,-12.03,.
〖探索3〗
所有正整数组成正整数集合,所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:
1,0.0708,-700,-π,-3.88,0,,3.14159265,,.
正整数集合:{…}负整数集合:{…}
整数集合:{…}
正分数集合:{…}负分数集合:{…}
(注意:大括号内的省略号表示什么?)
〖探索4〗
为什么不是分数?如果说所有的分数都是小数,对吗?反过来,所有的小数都是分数,对吗?
结论:(1)小数可以分为无限小数和有限小数两类,而无限小数又可分为(无限)循环小数和无限不循环小数两类;
(2)分数一定是小数,小数不一定是分数.
〖探索5〗
整数和分数统称有理数.
在数-100,70.8,-7,π,-3.8,0,,,中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.
(友情提示:π,都是小数,但都不是分数,自然也都不是有理数.你答对了吗?)
〖练习〗
p10.练习
【作业】
p18.习题1.
【补充作业】
1.列出竖式,把分数化为小数.(体会分数不可能是无限不循环小数.)
2.把下列小数化为分数:3.14159,.
【备选素材】
1.判断:
(1)一个有理数,不是正数,就是负数;
(2)一个有理数,不是整数,就是分数;
(3)一个有理数,是分数,就一定是小数;
(4)一个无限小数,如果不循环,就不是有理数;
(5)小数就是分数;
(6)有理数只能分成两类.
(7)负分数不是负数.
2.按符号分,整数可以分为正整数、______和______三类,而分数则分为__________和_________,共两类.
3.分数可以分为有限小数和________________两类.
4.满足什么条件的小数才是有理数?
5.(1)列出竖式,把分数化为小数;(体会分数不可能是无限不循环小数.)
(2)有的小数不是分数,你能举出一个例子吗?
(3)说明为什么0.3是分数,而却不是.
6.有理数可以分为整数和分数两类,还可以按符号分为正有理数﹑____和___________三类.
7.把下列各数填在相应的集合里:
-|-3|,-(-0.072),π,-3.88,,3.14,,.
有理数的乘方初中教案精选
有理数的乘方(第1课时)
教学任务分析
教学流程安排
课前准备
教学过程设计
案例点评:
以在国际象棋上放米粒的故事引课,学习之后又解决这个问题,使课程既丰富多彩,又妙趣横生,也产生了前后呼应的效果。
该案例中,教学过程的设计符合新课程标准和课程改革的要求,通过教学情景创设和优化课堂教学设计,真正体现了在活动中学习数学,在活动中“做数学”,利用教具使教学内容形象、直观并具有亲和力,极大地调动了学生的学习积极性和热情,培养了学生学习数学的兴趣。教学过程始终坚持让学生自己去动脑、动手、动口,在分析、练习基础上掌握知识。整个教学过程都较好地落实了“学生的主体地位和教师的主导作用”,让学生体会到学习成功的乐趣。
2.7有理数的混合运算(2)(范文)
教学目标;(一)知识学习点能按照有理数的运算律,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算.(二)能力训练点培养学生的观察能力和运算能力.(三)德育渗透点培养学生在计算前认真审题,确定运算律顺序,最后要验算的好的习惯.重点和难点:正确而合理地运用运算律,进行有理数混合计算.教学过程一情境问题试用两种不同的方法计算:()÷(-)+(-)二、自主探究1、在上述两种解题方法中,你认为哪一种方法简便?为什么?从中能得到什么启示?把你的做法和想法与同学交流一下。2、下面的解题过程正确吗?若错误,请加以改正:(1)=(-)-();(2)-5×3÷5×3=-(5×3)÷(5×3);(3)(-)÷(1)=(-)×()三、例题讲解:(1)1-12×(1-+-+);(2)(-+)÷(-);(3)(-13)÷(-5)+(-6)÷(-5)+(-196)÷(-5)+(+76)÷(-5);说明通过上面的数学活动,我们发现对于有理数的混合运算,可以利用有关的运算律来简化计算过程,在今后的解题中我们要灵活地加以运用。四、课后练习:a组1、计算:(1)17-6.25+8-0.75;(2)2-(-8)+(-2)+0.25-1.5-2.75;(3)(-12)×(-+2);(4)32×(-)+(-11)×(-)-21×(-);(5)(-81)÷2××(-);(6)-1×(1-)÷;(7)[1;(8)-250-(-49)×(-5);b组1、3×(3)×÷1-421×(0.25)21;3、4、c组已知a、b互为相反数,c、d互为倒数,。试求x2-(a+b+cd)x+(a+b)+(-cd)值。五、学习小结今天我们学习了有理数的混合运算,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算.能正确的运用运算律
板书设计
教后感