你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >正弦余弦教案模板
  • 正弦余弦教案模板

    发表时间:2022-02-12

    按照学校要求,初中老师都需要用到教案,通过不断的写教案,我们可以提高自己的语言组织能力,写出一份教学方案需要经过精心的准备,初中教案该怎么写?欢迎大家阅读小编为大家收集整理的《正弦余弦教案模板》。

    教学建议

    1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.

    2.重点、难点分析

    (1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.

    (2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.

    3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.

    锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:

    ∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.

    这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.

    应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.

    4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.

    我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有

    有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:

    很显然,这些表达式提供给我们丰富的边与角间的数量关系.

    5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.

    利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.

    根据定义,有

    另一方面,可以想像,当时,边与AC重合(即),所以

    当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有

    把以上结果可以集中列出下面的表:

    0

    1

    1

    0

    6.教法建议:

    (1)联系实际,提出问题

    通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.

    (2)动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.

    (3)加强数形结合思想的教学

    “解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.

    第一课时

    一、教学目标

    1.使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。

    2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。

    3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

    二、学法引导

    1.教学方法:引导发现和探索研究相结合,尝试成功教法。

    2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。

    三、重点、难点、疑点及解决办法

    1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。

    2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。

    3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。

    4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。

    四、教具准备

    自制投影片,一副三角板

    五、教学步骤

    (一)明确目标

    1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?

    2.长5米的梯子以倾斜角为30°靠在墙上,则、间的距离为多少?

    3.若长5米的梯子以倾斜角40°架在墙上,则、间距离为多少?

    4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?

    前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。

    通过四个例子引出课题。

    (二)整体感知

    1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。

    学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。

    2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

    这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。

    (三)教学过程

    1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。

    2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

    若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?引导学生独立证明:易知,……,∴∽∽∽……,∴,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。

    通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。

    而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。

    3.练习:教科书P3练习。此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。

    (四)总结、扩展

    1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。

    教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。

    2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。

    六、布置作业

    本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。

    七、板书设计

    第二课时

    一、教学目标

    1.使学生初步了解正弦、余弦概念;能够较正确地用、表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

    2.逐步培养学生观察、比较、分析、概括的思维能力.

    3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

    二、学法引导

    1.教学方法:指导发现探索法.

    2.学生学法:自主、合作、探究式学习.

    三、重点、难点、疑点及解决方法

    1.教学重点:使学生了解正弦、余弦概念.

    2.教学难点:用含有几个字母的符号组、表示正弦、余弦;正弦、余弦概念.

    3.疑点:锐角的正弦、余弦值的范围.

    4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点.

    四、教具准备

    三角板一副

    五、教学步骤

    (一)明确目标

    1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.”

    2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—.

    (二)整体感知

    当直角三角形有一锐角为30°时,它的对边与斜边的比值为,只要知道三角形任一边长,其他两边就可知.

    而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

    通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

    (三)教学过程

    正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

    在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图

    请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在中,为直角,我们把锐角的对边与余边的比叫做的正弦,记作,锐角的邻边与斜边的比叫做的余弦,记作.

    .

    若把的对边记作,邻边记作,斜边记作,则,.

    引导学生思考:当为锐角时,、的值会在什么范围内?得结论,(为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.

    教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“、”,经过反复强化,使全体学生都达到目标,更加突出重点.

    【例1】求出如下图所示的中的、和、的值.

    解:(1)∵斜边,

    ∴,.

    ,.

    (2),.

    ∴,.

    学生练习教材P6~7中1、2、3题.

    让每个学生画含30°、45°的直角三角形,分别求、、和、、.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

    ,,.

    ,,.

    【例2】求下列各式的值:

    (1);(2).

    解:(1).

    (2).

    这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

    (1);(2);

    (3);(4).

    (5)若,则锐角.

    (6)若,则锐角.

    在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的值,猜测一下,大概在什么范围内,呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.

    (四)总结、扩展

    首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即

    ,(为锐角).

    还发现的两锐角、,,,正弦值随角度增大而增大,余弦值随角度增大而减小”.

    六、布置作业

    教材P10中2,3.

    预习下一课内容.

    补充:(1)若,则锐角.

    (2)若,则锐角.

    七、板书设计

    Jk251.com相关文章推荐

    正弦余弦初中教案精选


    教学建议

    1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.

    2.重点、难点分析

    (1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.

    (2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.

    3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.

    锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:

    ∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.

    这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.

    应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.

    4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.

    我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有

    有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:

    很显然,这些表达式提供给我们丰富的边与角间的数量关系.

    5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.

    利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.

    根据定义,有

    另一方面,可以想像,当时,边与AC重合(即),所以

    当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有

    把以上结果可以集中列出下面的表:

    0

    1

    1

    0

    6.教法建议:

    (1)联系实际,提出问题

    通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.

    (2)动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.

    (3)加强数形结合思想的教学

    “解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.

    第一课时

    一、教学目标

    1.使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。

    2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。

    3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

    二、学法引导

    1.教学方法:引导发现和探索研究相结合,尝试成功教法。

    2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。

    三、重点、难点、疑点及解决办法

    1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。

    2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。

    3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。

    4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。

    四、教具准备

    自制投影片,一副三角板

    五、教学步骤

    (一)明确目标

    1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?

    2.长5米的梯子以倾斜角为30°靠在墙上,则、间的距离为多少?

    3.若长5米的梯子以倾斜角40°架在墙上,则、间距离为多少?

    4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?

    前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。

    通过四个例子引出课题。

    (二)整体感知

    1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。

    学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。

    2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

    这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。

    (三)教学过程

    1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。

    2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

    若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?引导学生独立证明:易知,……,∴∽∽∽……,∴,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。

    通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。

    而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。

    3.练习:教科书P3练习。此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。

    (四)总结、扩展

    1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。

    教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。

    2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。

    六、布置作业

    本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。

    七、板书设计

    第二课时

    一、教学目标

    1.使学生初步了解正弦、余弦概念;能够较正确地用、表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

    2.逐步培养学生观察、比较、分析、概括的思维能力.

    3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

    二、学法引导

    1.教学方法:指导发现探索法.

    2.学生学法:自主、合作、探究式学习.

    三、重点、难点、疑点及解决方法

    1.教学重点:使学生了解正弦、余弦概念.

    2.教学难点:用含有几个字母的符号组、表示正弦、余弦;正弦、余弦概念.

    3.疑点:锐角的正弦、余弦值的范围.

    4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点.

    四、教具准备

    三角板一副

    五、教学步骤

    (一)明确目标

    1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.”

    2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—.

    (二)整体感知

    当直角三角形有一锐角为30°时,它的对边与斜边的比值为,只要知道三角形任一边长,其他两边就可知.

    而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

    通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

    (三)教学过程

    正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

    在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图

    请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在中,为直角,我们把锐角的对边与余边的比叫做的正弦,记作,锐角的邻边与斜边的比叫做的余弦,记作.

    .

    若把的对边记作,邻边记作,斜边记作,则,.

    引导学生思考:当为锐角时,、的值会在什么范围内?得结论,(为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.

    教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“、”,经过反复强化,使全体学生都达到目标,更加突出重点.

    【例1】求出如下图所示的中的、和、的值.

    解:(1)∵斜边,

    ∴,.

    ,.

    (2),.

    ∴,.

    学生练习教材P6~7中1、2、3题.

    让每个学生画含30°、45°的直角三角形,分别求、、和、、.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

    ,,.

    ,,.

    【例2】求下列各式的值:

    (1);(2).

    解:(1).

    (2).

    这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

    (1);(2);

    (3);(4).

    (5)若,则锐角.

    (6)若,则锐角.

    在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的值,猜测一下,大概在什么范围内,呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.

    (四)总结、扩展

    首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即

    ,(为锐角).

    还发现的两锐角、,,,正弦值随角度增大而增大,余弦值随角度增大而减小”.

    六、布置作业

    教材P10中2,3.

    预习下一课内容.

    补充:(1)若,则锐角.

    (2)若,则锐角.

    七、板书设计

    正弦余弦的教学方案


    教学建议

    1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.

    2.重点、难点分析

    (1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.

    (2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.

    3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.

    锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:

    ∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.

    这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.

    应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.

    4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.

    我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有

    有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:

    很显然,这些表达式提供给我们丰富的边与角间的数量关系.

    5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.

    利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.

    根据定义,有

    另一方面,可以想像,当时,边与AC重合(即),所以

    当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有

    把以上结果可以集中列出下面的表:

    0

    1

    1

    0

    6.教法建议:

    (1)联系实际,提出问题

    通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.

    (2)动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.

    (3)加强数形结合思想的教学

    “解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.

    第一课时

    一、教学目标

    1.使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。

    2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。

    3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

    二、学法引导

    1.教学方法:引导发现和探索研究相结合,尝试成功教法。

    2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。

    三、重点、难点、疑点及解决办法

    1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。

    2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。

    3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。

    4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。

    四、教具准备

    自制投影片,一副三角板

    五、教学步骤

    (一)明确目标

    1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?

    2.长5米的梯子以倾斜角为30°靠在墙上,则、间的距离为多少?

    3.若长5米的梯子以倾斜角40°架在墙上,则、间距离为多少?

    4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?

    前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。

    通过四个例子引出课题。

    (二)整体感知

    1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。

    学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。

    2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

    这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。

    (三)教学过程

    1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。

    2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

    若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?引导学生独立证明:易知,……,∴∽∽∽……,∴,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。

    通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。

    而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。

    3.练习:教科书P3练习。此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。

    (四)总结、扩展

    1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。

    教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。

    2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。

    六、布置作业

    本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。

    七、板书设计

    第二课时

    一、教学目标

    1.使学生初步了解正弦、余弦概念;能够较正确地用、表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

    2.逐步培养学生观察、比较、分析、概括的思维能力.

    3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

    二、学法引导

    1.教学方法:指导发现探索法.

    2.学生学法:自主、合作、探究式学习.

    三、重点、难点、疑点及解决方法

    1.教学重点:使学生了解正弦、余弦概念.

    2.教学难点:用含有几个字母的符号组、表示正弦、余弦;正弦、余弦概念.

    3.疑点:锐角的正弦、余弦值的范围.

    4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点.

    四、教具准备

    三角板一副

    五、教学步骤

    (一)明确目标

    1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.”

    2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—.

    (二)整体感知

    当直角三角形有一锐角为30°时,它的对边与斜边的比值为,只要知道三角形任一边长,其他两边就可知.

    而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

    通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

    (三)教学过程

    正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

    在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图

    请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在中,为直角,我们把锐角的对边与余边的比叫做的正弦,记作,锐角的邻边与斜边的比叫做的余弦,记作.

    .

    若把的对边记作,邻边记作,斜边记作,则,.

    引导学生思考:当为锐角时,、的值会在什么范围内?得结论,(为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.

    教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“、”,经过反复强化,使全体学生都达到目标,更加突出重点.

    【例1】求出如下图所示的中的、和、的值.

    解:(1)∵斜边,

    ∴,.

    ,.

    (2),.

    ∴,.

    学生练习教材P6~7中1、2、3题.

    让每个学生画含30°、45°的直角三角形,分别求、、和、、.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

    ,,.

    ,,.

    【例2】求下列各式的值:

    (1);(2).

    解:(1).

    (2).

    这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

    (1);(2);

    (3);(4).

    (5)若,则锐角.

    (6)若,则锐角.

    在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的值,猜测一下,大概在什么范围内,呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.

    (四)总结、扩展

    首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即

    ,(为锐角).

    还发现的两锐角、,,,正弦值随角度增大而增大,余弦值随角度增大而减小”.

    六、布置作业

    教材P10中2,3.

    预习下一课内容.

    补充:(1)若,则锐角.

    (2)若,则锐角.

    七、板书设计

    数学教案-正弦余弦相关教学方案


    教学建议

    1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.

    2.重点、难点分析

    (1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.

    (2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.

    3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.

    锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:

    ∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.

    这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.

    应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.

    4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.

    我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有

    有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:

    很显然,这些表达式提供给我们丰富的边与角间的数量关系.

    5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.

    利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.

    根据定义,有

    另一方面,可以想像,当时,边与AC重合(即),所以

    当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有

    把以上结果可以集中列出下面的表:

    0

    1

    1

    0

    6.教法建议:

    (1)联系实际,提出问题

    通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.

    (2)动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.

    (3)加强数形结合思想的教学

    “解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.

    第一课时

    一、教学目标

    1.使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。

    2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。

    3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

    二、学法引导

    1.教学方法:引导发现和探索研究相结合,尝试成功教法。

    2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。

    三、重点、难点、疑点及解决办法

    1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。

    2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。

    3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。

    4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。

    四、教具准备

    自制投影片,一副三角板

    五、教学步骤

    (一)明确目标

    1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?

    2.长5米的梯子以倾斜角为30°靠在墙上,则、间的距离为多少?

    3.若长5米的梯子以倾斜角40°架在墙上,则、间距离为多少?

    4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?

    前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。

    通过四个例子引出课题。

    (二)整体感知

    1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。

    学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。

    2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

    这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。

    (三)教学过程

    1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。

    2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

    若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?引导学生独立证明:易知,……,∴∽∽∽……,∴,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。

    通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。

    而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。

    3.练习:教科书P3练习。此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。

    (四)总结、扩展

    1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。

    教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。

    2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。

    六、布置作业

    本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。

    七、板书设计

    第二课时

    一、教学目标

    1.使学生初步了解正弦、余弦概念;能够较正确地用、表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

    2.逐步培养学生观察、比较、分析、概括的思维能力.

    3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

    二、学法引导

    1.教学方法:指导发现探索法.

    2.学生学法:自主、合作、探究式学习.

    三、重点、难点、疑点及解决方法

    1.教学重点:使学生了解正弦、余弦概念.

    2.教学难点:用含有几个字母的符号组、表示正弦、余弦;正弦、余弦概念.

    3.疑点:锐角的正弦、余弦值的范围.

    4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点.

    四、教具准备

    三角板一副

    五、教学步骤

    (一)明确目标

    1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.”

    2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—正弦和余弦.

    (二)整体感知

    当直角三角形有一锐角为30°时,它的对边与斜边的比值为,只要知道三角形任一边长,其他两边就可知.

    而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

    通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

    (三)教学过程

    正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

    在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图

    请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在中,为直角,我们把锐角的对边与余边的比叫做的正弦,记作,锐角的邻边与斜边的比叫做的余弦,记作.

    .

    若把的对边记作,邻边记作,斜边记作,则,.

    引导学生思考:当为锐角时,、的值会在什么范围内?得结论,(为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.

    教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“、”,经过反复强化,使全体学生都达到目标,更加突出重点.

    【例1】求出如下图所示的中的、和、的值.

    解:(1)∵斜边,

    ∴,.

    ,.

    (2),.

    ∴,.

    学生练习教材P6~7中1、2、3题.

    让每个学生画含30°、45°的直角三角形,分别求、、和、、.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

    ,,.

    ,,.

    【例2】求下列各式的值:

    (1);(2).

    解:(1).

    (2).

    这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

    (1);(2);

    (3);(4).

    (5)若,则锐角.

    (6)若,则锐角.

    在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,大概在什么范围内,呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.

    (四)总结、扩展

    首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即

    ,(为锐角).

    还发现的两锐角、,,,正弦值随角度增大而增大,余弦值随角度增大而减小”.

    六、布置作业

    教材P10中2,3.

    预习下一课内容.

    补充:(1)若,则锐角.

    (2)若,则锐角.

    七、板书设计

    教案模板


    2.1比零小的数(2)

    教学目标:

    1.乐于接受数学信息,能用正、负数表示具有相反意义的量

    2.借助生活中的实例理解有理数的意义,通过将有理数分类,感受分类的思想

    重点:能应用正负数表示具有相反意义的量

    难点:运用有理数表示实际生活问题中的量

    教学设计:

    1.情境创设

    情境(1):课本第15页实例

    操作指导:投影出示日常生活中一些表示具有相反意义的量的实例,让学生感受用正负数来描述它们所带来的便捷

    情境(2):学生自己举一些生活中表示具有相反意义的量的实例

    2.探索活动

    (1).由课本中"零上的气温用正数表示,零下的气温用负数表示"入手,指导学生思考日常生活中还有那些意义相反的事例.又如何用正负数表示这些事例的量.这里可设置一些问题引导学生讨论.如:

    ①.零上温度用正数表示,零下温度用负数表示.你能用正负数表示收入与支出、增产与减产等问题中的相关量吗?

    ②.如果某次智力竞赛加100分表示为+100分,则扣50分如何表示?-200分表示什么意思?

    ⑵.课本第16页例2

    ⑶.有理数的概念

    这是学生第一次接触分类,要让学生初步感受分类思想.让学生感受分类的思想及方法以及有理数分类的另一方法:有理数可以分"正有理数,负有理数,0"

    (让学生模仿课本上的形式写出相应的分类表)

    ⑷.课本第16页"练一练"

    3.关于计算器教学

    由于计算器型号不一定一致,因此负数的输入方法也可能略有不同,可以在课内统一指导学生操作,也可以在课外指导学生阅读计算器使用说明书,让学生自行操作

    4.小结

    各小组互相讨论总结,得出本节课的主要内容:如何用正、负数表示一对具有相反意义的量;有理数的分类

    5.布置作业:课本p17习题2.1第3.4.5题

    建湖县建阳中学张仁勇

    上一篇:第二章有理数2.1比零小的数(1)

    下一篇:2.1比0小的数(一)教学设计

    桑塔露其亚教案教案模板


    桑塔.露琪亚》教案(第三单元-欧洲风情)单位:杭十三中音乐组年级:初一(11)班时间:2004年10月22日星期四课型:综合课教材:人教版(13)七年级课题:第三单元:欧洲风情第一节《桑塔.露琪亚》教学目标:(1)让学生对欧洲民间音乐感兴趣,喜欢不同民族的艺术风格,并能主动探索与其相关的音乐文化内涵。

    (2)能够用自然圆润的声音来演唱歌曲《桑塔.露琪亚》,背唱其中一段歌词,并能认识船歌这种体裁。(3)能够感受,体验《桑塔.露琪亚》的音乐情绪和风格,分辨男高音的音色特点。(4)能够参与演唱活动中的即兴表演。重点:了解意大利的文化,艺术,有感情的演唱歌曲《桑塔.露琪亚》

    难点:意大利船歌的演唱情绪的把握。

    教具:钢琴,音响,电视机。教材分析:1:《桑塔.露琪亚》是一首意大利那不勒斯的船歌,它是意大利作曲家科特劳根据威尼斯船歌的风格而改编的,《桑塔.露琪亚》两段歌词将美丽的夏夜展现在人们面前,令人陶醉,令人忘怀。歌曲为C大调,、八三拍子,中速稍快,由两个乐段构成,歌曲旋律优美流畅,给人以美好的艺术享受。

    2:船歌:这种歌曲或乐曲的特点是多采用八三拍子,八六拍子,给人以摇晃感觉,其情绪特点色彩是开朗奔放的,热情洋溢的。教学过程:一。组织教学(复习新疆民歌《青春舞曲》二:导入新课(1:导语:每个国家都有着极具特色的民歌或民族音乐,今天我们走出国门,到欧洲去走走看看,领略那里的民歌,老师和大家走进意大利――――)2:展示欧洲和意大利的版图)三:观赏意大利的名城威尼斯,佛罗论撒(通过影像资料)

    1了解意大利的风土人情

    2请学生讨论(如威尼斯的交通工具贡多拉,佛罗论撒的歌剧院,意大利的那不勒斯等)四欣赏意大利的音乐艺术。

    1请学生观看帕瓦罗第演唱的意大利民歌《我的太阳》。(意大利的那不勒斯――那坡里民歌――《我的太阳》――帕瓦罗第)

    2让学生讨论世界三大男高音的声音特点:(帕瓦罗第-意大利男高音歌唱家,音色明亮,有穿透力)。(多明戈-西班牙男高音歌唱家,音色丰满华丽,坚强有力。)(卡雷拉斯-西班牙男高音歌唱家,音色流畅抒情)。五学习意大利民歌《桑塔.露琪亚》

    1)听范唱,(请学生讲解歌曲结构,明确歌曲的调号和拍号)

    2)学唱歌曲:A:请有键盘基础的学生带领大家学习歌曲的旋律

    B:老师带领学生来练习曲中的变化音。

    C:有感情的朗诵歌词。

    D:完整演唱第一段,体会歌曲的内容和风格。

    3)请学生设计此歌演唱方案(演唱情绪等)

    4)请两位以上的学生演唱个别段落,来展示他们设计的演唱情绪。六学生对《桑塔.露琪亚》进行表演和在创造。

    1)体会划船动作,并分组练习。

    2)结合演唱,边划边唱,营造船歌氛围。七小节和布置作业

    1)下去练习歌曲第二段。

    2)去网上搜索和欧洲相关的艺术文化和了解欧洲历史。

    【正弦余弦教案模板】相关推荐
    动物在自然界中的作用初中教案精选

    一、教学目标1、能举例说明动物在维持生态平衡、促进生态系统的物质循环和帮助植物传粉、传播种子等方面的作用。2、认同动物是生物圈中重要成员的观点,培养学生爱护动物、保护动物的情感。3、学会用辩证的观点来...

    第 生物的进化教案

    第2节生物的进化一.教学目标:1.列举古生物学化石方面的证据说明生物是进化的;2.简述达尔文的自然选择学说的主要内容;3.形成生物进化的基本观点。二.教学重难点:4.生物化石的形成过程和化石记录的生物...