你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >经典初中教案函数的图象
  • 经典初中教案函数的图象

    发表时间:2022-02-11

    【www.jk251.com - 函数的图象】

    按照学校要求,初中老师都需要用到教案,教案有利于教学水平的提高,初中老师经常会为写教案感到苦恼,对于初中教案报的撰写你是否毫无头绪呢?欢迎大家阅读小编为大家收集整理的《经典初中教案函数的图象》。

    教学目标:

    1、培养学生看图识图的能力.

    2、在识图过程中,渗透数形结合的数学思想.

    3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.

    4、激发学生学习数学的兴趣,培养学生的探索精神

    教学重点:培养学生看图识图的能力

    教学难点:渗透数形结合的数学思想

    教学用具:计算机、投影机

    教学方法:谈话法、分组讨论

    教学过程:

    1、阅读习题13.3的第四题

    学生阅读后,老师可以提问学生,分别回答:

    下图是北京春季某一天的

    2、提出看图说图的重要性

    随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.

    3、为学生提供相对丰富的素材,体会以图识性.

    例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是.如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?

    (读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).

    从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.

    如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.

    而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.

    例2、如图,是各月气温的分配图

    能从图中找出气温最低的月份,气温最高的月份.

    并判断出该地所处的气温带.

    分析:最高气温在7月,最低在2月.气温曲线的

    下限也在以上,即~之间,因此可判断出

    该地位于亚热带.

    (从数字的变化中,找出事物发展的规律.数学为其它科学所用,数学能力也包括科学的收集信息,整理信息,分析信息的能力.本课例也在试图探索出一条数学与其它学科综合的课例,让学生切实地体会出画图象的好处,体会到数学的用处.数学收集的是数量,但我们可以凭借这些数量,发现它们背后的科学规律.

    例3、没有创新就没有发展.因此现代社会要求人必须具有创造性的思维.你想过有关创造性的问题吗?人的创造性思维发展是否随着年龄的增大而呈直线上升趋势?男女之间有区别吗?你可以谈一谈你的想法.

    参考资料:思维的流畅性,是指在限定时间内产生观念数量的多少.在短时间内产生的观念多,思维流畅性大;反之,思维缺乏流畅性.以研究智力结构和创造性思维而闻名的美国心理学家吉尔福特把思维流畅性分为四种形式:①用词的流畅性,一定时间内能产生含有规定的字母或字母组合的词汇量的多少;②联想的流畅性,在限定的时间内能够从一个指定的词当中产生同意词(或反义词)数量的多少;③表达的流畅性,按照句子结构要求能够排列词汇量的数量的多少;④观念的流畅性,能够在限定的时间内产生满足一定要求的观念的多少,也就是提出解决问题的答案的多少.

    以上的参考资料教师可视学生的情形灵活处理,可以作为预习作业提前下发,也可以在上课时,由老师进行通俗的解释.

    右图是以美国心理学家对小学一年级学生至成年人进行大规模有组织的的创造性思维测验后,根据其中的流畅性分数绘制的曲线图.

    (1)从图中可以看出,创造性思维的发展不是直线的,而是成犬齿形曲线

    (2)男女生曲线基本相似,波峰与波谷基本出现在同一点上.

    (3)小学一至三年级呈直线上升状态;小学四年级下跌;小学年级又回复上升;小学六年级至初中一年级第二次下降;以后直至成人基本保持上升趋势.

    (注)虽然图中曲线只是儿童期创造性思维的流畅性曲线,但心理学家认为,它也从一定程度上说明了儿童期创造力发展的一般进度.

    4、小结:从上面的例题可以看出,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活做出贡献.因此现代数学的特点之一是它广泛的应用性.数学的学习需要我们有搜集信息分析整理信息的能力.通过观察、归纳、总结出规律,并能应用规律解决问题.

    5、作业:从其它学科或现实生活中找出曲线图,加以分析,提出你自己的想法.

    jK251.com其他人还在看

    经典初中教案反比例函数及其图象


    教学设计示例1

    教学目标:

    1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;

    2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;

    3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

    4、体会数学从实践中来又到实际中去的研究、应用过程;

    5、培养学生的观察能力,及数学地发现问题,解决问题的能力.

    教学重点:

    结合图象分析总结出反比例函数的性质;

    教学难点:描点画出反比例函数的图象

    教学用具:直尺

    教学方法:小组合作、探究式

    教学过程:

    1、从实际引出反比例函数的概念

    我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例

    即vt=S(S是常数);

    当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)

    从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

    (S是常数)

    (S是常数)

    一般地,函数(k是常数,)叫做反比例函数.

    如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.

    在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供

    2、列表、描点画出反比例函数的图象

    例1、画出反比例函数与的图象

    解:列表

    x

    -6

    -5

    -4

    -3

    1

    2

    3

    4

    5

    6

    -1

    -1.2

    -1.5

    -2

    6

    3

    2

    1.5

    1.2

    1

    1

    1.2

    1.5

    2

    -6

    -3

    -2

    -1.5

    -1.2

    1

    说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图

    一般地反比例函数(k是常数,)的图象由两条曲线组成,叫做双曲线.

    3、观察图象,归纳、总结出反比例函数的性质

    前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.

    显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)

    (1)的图象在第一、三象限.可以扩展到k>0时的情形,即k>0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.

    的讨论与此类似.

    抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.

    (2)函数的图象,在每一个象限内,y随x的增大而减小;

    从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k>0时,函数的图象,在每一个象限内,y随x的增大而减小.

    同样可以推出的图象的性质.

    (3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.

    函数的图象性质的讨论与次类似.

    4、小结:

    本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.

    5、布置作业习题13.81-4

    第1234页

    函数的图象初中教案精选


    教学目标:

    1、培养学生看图识图的能力.

    2、在识图过程中,渗透数形结合的数学思想.

    3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.

    4、激发学生学习数学的兴趣,培养学生的探索精神

    教学重点:培养学生看图识图的能力

    教学难点:渗透数形结合的数学思想

    教学用具:计算机、投影机

    教学方法:谈话法、分组讨论

    教学过程:

    1、阅读习题13.3的第四题

    学生阅读后,老师可以提问学生,分别回答:

    下图是北京春季某一天的

    2、提出看图说图的重要性

    随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.

    3、为学生提供相对丰富的素材,体会以图识性.

    例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是.如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?

    (读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).

    从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.

    如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.

    而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.

    第12页

    经典初中教案数学教案-函数学图象的性质


    初中数学活动课教案一

    函数图象的性质

    活动目标:

    1、利用几何画板的形象性,通过量的变化,验证并进一步研究

    函数图象的性质。

    2、利用几何画板的动态性,从变化的几何图形中,寻找不变的几

    何规律。

    3、学会作简单函数的图象,并对图象作初步了解。

    4、通过本节课的教学,把几何画板作为学生认知的工具,从而激

    发学生学习和探索数学的兴趣。

    活动重点:图形的性质和规律的探索

    活动难点:几何画板的操作(作函数的图象)

    活动设施:微机室(有液晶投影仪和大屏幕或大彩电);软件:windows操作平台、几何画板、office2000等、教师准备好的五个画板文件:hstx1.gsp、hstx2.gsp、hstx3.gsp、ymdl1.gsp、ymdl2.gsp。

    活动过程:

    一、展示活动主题和目标:

    二、活动过程:

    操作练习一:

    按下列步骤进行操作,并回答相应的问题。

    1、打开c:\sketch\hstx1.gsp画板文件;

    2、拖动点E和点F沿坐标轴运动(或双击按钮“动画1”),同时观看解析式中的k和b的变化。

    ①当k>0时,图象经过哪几个象限?

    ②当k

    3、双击显示按钮后,在k>0和k

    4、先在坐标系内作出直线(或直接打开文件:c:\sketch\hstx2.gsp)

    附:作图步骤

    ①点击“文件”菜单中的“新绘图”命令;

    ②用“直尺工具”中的直线工具,在绘图板内画一直线,并用文本工具给直线上的两个空心点加上标签A和B;

    ③用“选择工具”选中直线后,点击“度量”菜单中的“方程”命令,得坐标系和直线的方程;然后,再进行以下操作,并回答问题:

    (1)用鼠标拖动直线进行平移,k和b中哪个变,哪个不变?

    (2)当直线通过原点时,b为多少?此时函数又叫什么函数?

    (3)拖动点A,使直线绕点B旋转,观察直线的倾斜程度与k之间的关系?

    操作练习二:

    1、打开文件:c:\sketch\hstx3.gsp

    2、保持a不变,分别上下移动b、c改变b、c的大小时,抛物线的形状是否变化?上下移动a改变a的大小,注意观看抛物线的开口方向与什么有关?张口程度与什么有关?

    3、上下移动c改变c的大小,看抛物线怎样变化?

    4、分别改变a、b的大小,看抛物线的对称轴是否发生变化?由3和4可知,抛物线的对称轴与什么有关?与什么无关?

    5、c保持不变,改变a、b时,抛抛线总是经过哪一点?

    6、抛物线与x轴交点的个数与b2-4ac的符号有什么关系?

    7、双击显示按钮,再双击动画按钮,观察y随x怎样变化?

    8、当a=0时,函数的图象是什么?

    操作练习三:

    打开文件:c:\sketch\ymdl1.gsp

    圆的两弦AB、CD相交于圆内一点P,我们得到,如果把点P拖到圆外,上述结论是否成立?如果点在圆上呢?

    操作练习四:作函数y=x2-2的图象

    作图步骤:

    1、击“文件”菜单中“新绘图”命令,建立新的绘图板;

    2、点击“图表”菜单中的“建立坐标轴”;

    3、在横坐标轴上任找一点,用“文本工具”,加上标签“C”,选中C点,单击“度量”菜单中的“坐标”命令,得度量值,C:(-2.80,0.00),再用“选择工具”选择它。(度量值变黑)

    4、点击“度量”菜单中的“计算”命令,出现计算器;

    5、点击“数值”下拉式菜单中的“点C”的“x”值,按“确定”按纽,得Xc=-2.80再用“选择工具”选择它。(度量值变黑)

    6、点击“度量”菜单中的“计算”命令,出现计算器,再点击“数值”下拉式菜单中的“x[c]”,分别按计算器上的“∧”、“2”、“-”、“2”、“确定”按纽。得到代数式的值:xc2-2=14.45.

    7、用“选择工具”,分别选中Xc=-2.80xc2-2=14.45.(选取第二个对象要按键盘上的“shift”键的同时再选);

    8、点击“图表”菜单中的“绘出(x,y)”,得到点“E”。(如果看不到点E,说明它不在当前的视窗内,此时可调整C点,使该点出现在窗口内);

    9、分别选中点E和点C,点击“作图”菜单中的“轨迹”,得二次函数的图象。

    操作练习五:

    运用练习四的原理,绘制其它函数的图象(包括学过的和没有学过的),谈谈你对所绘函数图象的认识。

    数学教案-函数的图象初中教案精选


    函数的图象

    教学目标

    (一)知道函数图象的意义;

    (二)能画出简单函数的图象,会列表、描点、连线;

    (三)能从图象上由自变量的值求出对应的函数的近似值。

    教学重点和难点

    重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

    难点:对已恬图象能读图、识图,从图象解释函数变化关系。

    教学过程设计

    (一)复习

    1.什么叫函数?

    2.什么叫平面直角坐标系?

    3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?

    4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5).

    5.请在坐标平面内画出A点。

    6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)

    (二)新课

    我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x为自变量时,y是x的函数。

    这个函数关系中,y与x的函数。

    这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

    具体做法是

    第一步:列表。(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值。

    函数式y=2x+1

    自变量x

    -2

    -1

    0

    1

    2

    函数值y

    -3

    -1

    1

    3

    5

    (这种用表格表示函数关系的方法叫做列表法)

    第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点。也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。

    第三步连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象。图13-24

    例1在同一直角坐标系中画出下列函数式的图象:

    (1)y=-3x;(2)y=-3x+2;(3)y=-3x-3

    分析:按照列表、描点、连线三步操作。

    解:

    函数式(1)y=-3x

    自变量x

    -2

    -1

    0

    1

    2

    函数y

    6

    3

    0

    -3

    -6

    函数(2)y=-3x+2

    自变量x

    -2

    -1

    0

    1

    2

    函数y

    8

    5

    2

    -1

    -4

    函数(3)y=-3x-3

    自变量x

    -2

    -1

    0

    1

    2

    函数y

    3

    0

    -3

    -6

    -9

    它们的图象分别是图13-25中的(1)(2)(3)。

    例2某化工厂1月到12月生产某种产品的统计资料如下:

    X/月份

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    Y/产品吨数

    2

    3

    3

    4

    5

    6

    6

    6

    5

    4

    5

    7

    (1)在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画邮对应的点。把12个点画在同一直角坐标系中。

    (2)按照月份由小到大的顺序,把每两个点用线段连接起来。

    (3)解读图象:从图说出几月到几月产量是上升的、下降的或不升不降的。

    (4)如果从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨?

    解:(1),(2)见图13-26

    (3)产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升。

    产量下降:8月到9月,9月到10月。

    产量不升不降:2月到3月;6月到7月,7月到8月。

    (4)过x轴上的4.5处作y轴的平行线,与图象交于点A,则点A的纵坐标约4.5,所以4月15日的产量约为4.5吨。

    (三)课堂练习

    已知函数式y=-2x。用列表(x取-2,-1,2,1,2),描点,连线的程序,画出它的图象。

    (四)小结

    到现在,我们已经学过了表示函数关系的方法有三种:

    1.解析式法——用数学式子表示函数的关系。

    2.列表法——通过列表给出函数y与自变量x的对应关系。

    3.图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系内描出对应的点,所有这些点的集合,叫做这个函数的图象。用图象来表示函数y与自变量x对应关系。

    这三种表示函数的方法各有优缺点。

    1.用解析法表示函数关系

    优点:简单明了。能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。

    缺点:在求对应值时,有时要做较复杂的计算。

    2.用列表表示函数关系

    优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便。

    缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。

    3.用图象法表示函数关系

    优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。

    缺点:从自变量的值常常难以找到对应的函数的准确值。

    函数的三种基本表示方法,各有各的优点和缺点,因此,要根据不同问题与需要,灵活地采用不同的方法。在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图象。

    (五)作业

    1.在图13-27中,不能表示函数关系的图形有()

    (A)(a),(b),(c)(B)(b),(c),(d)(C)(b),(c),(e)(D)(b),(d),(e)

    2.函数y=的图象是图13-28中的()

    3.矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2).

    (1)以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围;

    (2)列表、描点、连线画出此函数的图象

    4.(1)画出函数y=-x+2的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图);

    (2)判断下列各有序实数对是不是函数。Y=-x+2的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所出的函数图象上:

    (-2,2),(-,2),(-1,3),(,1)

    5.画出下列函数的图象:

    (1)y=4x-1;(2)y=4x+1

    6.图13-29是北京春季某一天的气温随时间变化的图象。根据图象回答,在这一天:

    (1)8时,12时,20时的气温各是多少;

    (2)最高气温与最低气温各是多少;

    (3)什么时间气温最高,什么时间气温最低。

    7.画出函断y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点):

    X

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    y

    8.画出函数y=图象(先填下表,再描点,然后用平滑曲线顺次连结各点):

    X

    -6

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    y

    作业的答案或提示

    1.选(C),因为对应于x的一个值的y值不是唯一的。

    2.选(D)当x0时,=x,所以y===1

    3.

    (1)y=x(6-x)其中0

    (2)

    X

    0

    1

    2

    3

    4

    5

    6

    y

    0

    5

    8

    9

    8

    5

    0

    4.

    Y=-x+2

    x

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    y

    3

    3

    2

    2

    2

    1

    1

    1

    经过检验,点(-,2)及点(,1)在所画的函数图象上。

    5.

    Y=4x-1

    X

    -2

    -1

    0

    1

    2

    y

    -9

    -5

    -1

    3

    7

    Y=4x+1

    x

    -2

    -1

    0

    1

    2

    y

    -7

    -3

    1

    5

    9

    6.(1)8时约5℃,20时约10℃。(2)最高气温为12℃,最低气温为2℃。(3)14时气温最高,4时气温最低。

    7.

    Y=x2

    X

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    y

    4

    2.25

    1

    0.25

    0

    0.25

    1

    2.25

    4

    8.

    Y=

    X

    -6

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    y

    -1

    -

    -

    -2

    -3

    -6

    6

    3

    2

    1

    课堂教学设计说明

    1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。

    2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问坐标平面上的点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。

    3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。

    4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。

    5.作业中的第1-3题,对训练函数图象很有帮助。

    第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。

    第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x

    第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。

    函数的图象的教学方案


    教学目标:

    1、培养学生看图识图的能力.

    2、在识图过程中,渗透数形结合的数学思想.

    3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.

    4、激发学生学习数学的兴趣,培养学生的探索精神

    教学重点:培养学生看图识图的能力

    教学难点:渗透数形结合的数学思想

    教学用具:计算机、投影机

    教学方法:谈话法、分组讨论

    教学过程:

    1、阅读习题13.3的第四题

    学生阅读后,老师可以提问学生,分别回答:

    下图是北京春季某一天的

    2、提出看图说图的重要性

    随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.

    3、为学生提供相对丰富的素材,体会以图识性.

    例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是.如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?

    (读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).

    从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.

    如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.

    而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.

    例2、如图,是各月气温的分配图

    能从图中找出气温最低的月份,气温最高的月份.

    并判断出该地所处的气温带.

    分析:最高气温在7月,最低在2月.气温曲线的

    下限也在以上,即~之间,因此可判断出

    该地位于亚热带.

    (从数字的变化中,找出事物发展的规律.数学为其它科学所用,数学能力也包括科学的收集信息,整理信息,分析信息的能力.本课例也在试图探索出一条数学与其它学科综合的课例,让学生切实地体会出画图象的好处,体会到数学的用处.数学收集的是数量,但我们可以凭借这些数量,发现它们背后的科学规律.

    例3、没有创新就没有发展.因此现代社会要求人必须具有创造性的思维.你想过有关创造性的问题吗?人的创造性思维发展是否随着年龄的增大而呈直线上升趋势?男女之间有区别吗?你可以谈一谈你的想法.

    参考资料:思维的流畅性,是指在限定时间内产生观念数量的多少.在短时间内产生的观念多,思维流畅性大;反之,思维缺乏流畅性.以研究智力结构和创造性思维而闻名的美国心理学家吉尔福特把思维流畅性分为四种形式:①用词的流畅性,一定时间内能产生含有规定的字母或字母组合的词汇量的多少;②联想的流畅性,在限定的时间内能够从一个指定的词当中产生同意词(或反义词)数量的多少;③表达的流畅性,按照句子结构要求能够排列词汇量的数量的多少;④观念的流畅性,能够在限定的时间内产生满足一定要求的观念的多少,也就是提出解决问题的答案的多少.

    以上的参考资料教师可视学生的情形灵活处理,可以作为预习作业提前下发,也可以在上课时,由老师进行通俗的解释.

    右图是以美国心理学家对小学一年级学生至成年人进行大规模有组织的的创造性思维测验后,根据其中的流畅性分数绘制的曲线图.

    (1)从图中可以看出,创造性思维的发展不是直线的,而是成犬齿形曲线

    (2)男女生曲线基本相似,波峰与波谷基本出现在同一点上.

    (3)小学一至三年级呈直线上升状态;小学四年级下跌;小学年级又回复上升;小学六年级至初中一年级第二次下降;以后直至成人基本保持上升趋势.

    (注)虽然图中曲线只是儿童期创造性思维的流畅性曲线,但心理学家认为,它也从一定程度上说明了儿童期创造力发展的一般进度.

    4、小结:从上面的例题可以看出,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活做出贡献.因此现代数学的特点之一是它广泛的应用性.数学的学习需要我们有搜集信息分析整理信息的能力.通过观察、归纳、总结出规律,并能应用规律解决问题.

    5、作业:从其它学科或现实生活中找出曲线图,加以分析,提出你自己的想法.

    数学教案-一次函数的图象性质一次函数的图象性质初中教案精选


    一次函数的图象和性质

    一、目的要求

    1.使学生能画出正比例函数与一次函数的图象。

    2.结合图象,使学生理解正比例函数与一次函数的性质。

    3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。

    二、内容分析

    1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

    2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

    三、教学过程

    复习提问:

    1.什么是一次函数?什么是正比例函数?

    2.在同一直角坐标系中描点画出以下三个函数的图象:

    y=2xy=2x-1y=2x+1

    新课讲解:

    1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

    再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

    一般地,一次函数的图象是一条直线。

    前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

    先看两个正比例项数,

    y=0.5x

    与y=-0.5x

    由这两个正比例函数的解析式不难看出,当x=0时,

    y=0

    即函数图象经过原点.(让学生想一想,为什么?)

    除了点(0,0)之外,对于函数y=0.5x,再选一点(1,0.5),对于函数y=-0.5x。再选一点(1,一0.5),就可以分别画出这两个正比例函数的图象了。

    实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:

    (1)先选取两点,通常选点(0,0)与点(1,k);

    (2)在坐标平面内描出点(0,o)与点(1,k);

    (3)过点(0,0)与点(1,k)做一条直线.

    这条直线就是正比例函数y=kx(k≠0)的图象.

    观察正比例函数y=0.5x的图象.

    这里,k=0.5>0.

    从图象上看,y随x的增大而增大.

    再观察正比例函数y=-0.5x的图象。

    这里,k=一0.5<0

    从图象上看,y随x的增大而减小

    实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质.

    先看

    y=0.5x

    任取两对对应值.(x1,y1)与(x2,y2),

    如果x1>x2,由k=0.5>0,得

    0.5x1>0.5x2

    即yl>y2

    这就是说,当x增大时,y也增大。

    类似地,可以说明的y=-0.5x性质。

    从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。

    一般地,正比例函数y=kx(k≠0)有下列性质:

    (1)当k>0时,y随x的增大而增大;

    (2)当k<0时,y随x的增大而减小。

    2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数

    y=kx+b(k,b是常数,k≠0)

    通常选取

    (o,b)与(-两点,对于例l中的一次函效y=2x+1与y=-2x+1就分别选取(o,1)与(一0.5,2),还有(0,1)—与(0.5.0).在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线)y=kx+b结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。课堂练习:教科书13.5节第一个练习第l—2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。课堂小结:1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.2.一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点,0),过这两点的直线即所求图象.3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).四、课外作业1.教科书习题13.5a组第l一3题.

    【经典初中教案函数的图象】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...